
1

Admission Control with Online Algorithms in SDN
Jérémie Leguay, Lorenzo Maggi, Moez Draief, Stefano Paris, Symeon Chouvardas

Mathematical and Algorithmic Science Lab, France Research Center
Huawei Technologies Co. Ltd., Boulogne-Billancourt, France

Abstract—By offloading the control plane to powerful com-
puting platforms running on commodity hardware, Software
Defined Networking (SDN) unleashes the potential to operate
computation intensive machine learning tools and solve complex
optimization problems in a centralized fashion. This paper studies
such an opportunity under the framework of the centralized SDN
Admission Control (AC) problem. We first review and adapt some
of the key AC algorithms from the literature, and evaluate their
performance under realistic settings. We then propose to take a
step further and build an AC meta-algorithm that is able to track
the best AC algorithm under unknown traffic conditions. To this
aim, we exploit a machine learning technique called Strategic
Expert meta-Algorithm (SEA).

Keywords—Software Defined Networking, Online Algorithms,
Machine Learning, Routing, Admission Control

I. INTRODUCTION

Software-Defined Networking (SDN) technologies have rad-
ically transformed the network architecture of data centers,
network overlays, and carrier networks [1]. They provide
programmable data planes that can be configured from a
remote controller platform. This engenders a separation be-
tween control and data planes, thus creating an opportunity to
implement routing processes that are more efficient than classic
ones: in fact, the controller can take real-time decisions at a
(logically) centralized location using an accurate and global
view of the network.

A key task of the SDN controller is the Admission Control
(AC) on incoming connection requests. Its goal is to gracefully
manage service requests when the network becomes highly
utilized. AC accepts or drops new requests depending on the
resource availability. Non-myopic decisions have to be made
with the aim of maximizing a given profit, such as the total
accepted throughput, the financial revenue generated or the
quality of service experienced by users. Nowadays, most of the
deployed AC procedures are threshold-based. They use max-,
min-, exclusive- and non-exclusive-limits on resource portions
that the network operator can define for different classes of
flows. The main problem here lies in defining the threshold
in a dynamic fashion, as the optimal configuration depends on
the network traffic conditions, which fluctuate over time.

In this paper we wish to raise the awareness that the ability
of SDN controllers to centrally manage the network is an op-
portunity to revisit the way AC is performed. More specifically,
we propose to apply AC online algorithms originally conceived
for covering and packing problems. Thus, we first make a
thorough review of online algorithms proposed in the operation
research literature and adapt them to the AC problem.

Email: firstname.lastname@huawei.com
The authors would like to thank Moti Medina for useful comments and

inspiring discussions.

We then take a step further, and we propose to exploit the
computational power offered by SDN controllers to implement
machine learning techniques to boost the admission control
performance (e.g., in terms of accepted throughput) via expert
meta-algorithms, which are able to adaptively track the best
AC algorithm without knowing the traffic statistics a priori.
Specifically, we pinpoint a meta-algorithm called Strategic
Expert meta-Algorithm (SEA) [2] which shows theoretical
guarantees under our reactive scenario, on which there is little
research.

II. OFFLINE ADMISSION CONTROL

We represent the network as a capacitated graph G(V,E),
where V and E are the set of nodes and directed edges
in the graph, respectively. Let n = |V | denote the number
of nodes in the graph. Each link e ∈ E has capacity ue.
Connection requests arrive sequentially, and we denote the
set of all connection requests by K. The i-th request, with
guaranteed bandwidth1 ri, is described by a source-destination
pair (si, di), a pair of non-negative starting and ending times
(tsi , t

f
i) and a profit bi. We denote Pi as the set of feasible paths

for connection request i (if i is accepted). We define f(i, p)
as the portion of flow i that has been allocated to path p ∈ Pi.
Since we do not deal with fractional routing, f(i, p) ∈ {0, 1},
i.e., only one path can be used for each flow. The objective of
the offline admission control problem is to maximize the total
profit over the whole sequence of requests, known a priori, as
follows:

max
f

∑
i∈K

∑
p∈Pi

bi f(i, p) (1)

s.t.
∑
i∈K

∑
p∈Pi|e∈p

f(i, p) ri(t) ≤ ue, ∀ e ∈ E, t ≥ 0 (2)

∑
p∈Pi

f(i, p) ≤ 1, ∀ i ∈ K

f(i, p) ∈ {0, 1}.

Nevertheless, solving (1) is not possible in practice: the con-
troller receives information on the arrival and departures of
requests as soon as they occur, and it has to make a decision
on-the-fly. Therefore, the controller needs to decide whether to
reject or accept (and on which path, if accepted) a connection
request when the request itself materializes. Moreover, the
controller is oblivious to future requests and it cannot revisit
past decisions.

In the next sections we will show efficient online strategies
that show the tendency to reject low-profit connection requests

1For simplicity, we will denote ri(t) = ri for all t ∈ [tsi , t
f
i] and ri(t) = 0

otherwise.

2

over highly utilized paths. Indeed, such requests quickly sat-
urate the links and hinder the acceptance of future highly
profitable connections.

III. ONLINE ADMISSION CONTROL ALGORITHMS

Traditionally, online algorithms for admission control fall
into two main categories: i) worst-case and ii) average-case.
i) Worst-case algorithms are characterized by max-min perfor-
mance guarantees under specific worst-case scenarios where
a malicious adversary chooses the worst possible sequence
of connection requests. Due to their conservative nature, they
generally underperform under more standard traffic conditions.
On the other hand, ii) average-case algorithms show high ex-
pected performance over random traffic conditions, but cannot
guarantee good performance in specific adversarial scenarios.

A. Worst-case Admission Control (AC) Algorithms
Among the worst-case scenario AC algorithm, we first

mention AAP algorithm [3], taking admission control decisions
based on the current utilization of network links. It computes
path costs over a modified network graph where weights
depend exponentially on the link utilization. This trick aims at
pre-emptively driving traffic away from the links being highly
utilized. The acceptance decision is based on a comparison
between the cost of accepting the request and the resulting
maximum future accepted throughput. Authors of AAP showed
that the choice µ = 2nTR/r + 1 and ρ = nRT guarantees a
competitive ratio of O(log(nT)) for any sequence of requests
with rj ≤ mine

b(e)
log(µ) (R denotes the maximum possible

request bandwidth and T the maximum possible request dura-
tion). This means that the number of accepted requests is in the
worst-case O(log(nT)) smaller than the number of requests
that could be routed by the optimal solution of the offline
problem in (1).

AAP may not be easy to implement in reality, as it requires
i) the a priori knowledge of requests duration and ii) the
calculation of an integral which becomes time consuming
when the number of flows is large. For these practical reasons,
a simpler version of AAP called EXP has been introduced by
Gawlick [4]. It uses a simple sum on the instant weights in
the acceptance criteria and route requests on the minimum cost
path, taking any additive weight (e.g., hop count) of interest in
the original graph. Unfortunately, these modifications to AAP
invalidate all the competitiveness guarantees.

Buchbinder et al. proposed in [5], [6] a primal-dual frame-
work to derive algorithms for online packing and covering
problems with performance guarantees in the worst-case sce-
nario. Such framework developed the theory behind the initial
intuition of AAP.

The rationale behind primal-dual AAP (AAP pd) is that,
when a demand arrives, the corresponding primal and dual
variables are set while maintaining feasibility in both problems
and while making sure that the derivative of the primal
objective subject to the new dual variable evolves linearly with
respect to primal variables, as proposed by [6]. The second
constraint guarantees the competitiveness of the algorithm. In
the same manner as AAP, the acceptance decisions is taken
by comparing the request cost (primal cost increase) and its

profit (dual cost increase). We describe the steps of the Primal-
Dual version of the AAP algorithm in Alg. 1, by using more
efficient incremental updates of the primal variable xe.

Algorithm 1 Primal-Dual AAP Algorithm [5], [6]

Initialize xe = 0
function ROUTE(request j)

if ∃ a path P ∈ Pj of cost < 1 in the graph weighted
by xe then

Route request j on P
for each edge e ∈ P do

xe = xe exp
ln(1+n).rj

ue
+ 1

n (exp
ln(1+n).rj

ue
− 1)

end for
else

Reject request j
end if

end function

B. Beyond Worst-case AC Algorithms

We now turn our attention towards online average-case
(also called “stochastic”) algorithms, showing good expected
performance under random traffic conditions. We present re-
cent algorithms that have been originally proposed for online
packing and covering problems with a finite number of objects,
and that we have adapted to our admission control problem.

The Primal-Beats-Dual (PBD) algorithm has been intro-
duced by Kesselheim et al. in [7] for online packing problems
with a finite number of objects. PBD uses the fractional
solution of the packing LP (dual in our case, but primal in [7])
as an advice to select paths along which requests have to be
routed. At the j-th request, out of a total number L of requests,
PBD computes the fractional solution f̂ of the relaxed covering
linear program by taking into account the currently active
demands, and by scaling the capacity by a factor j

L . PBD then
choose for j a candidate path p with probability proportional
to f̂ , and accepts demand j only if path p is feasible. The
original algorithm is 1 − O(

√
log d
B)-competitive for a finite

number of requests, where d is the maximum hop count of
the routed requests, and B is the capacity ratio between the
minimum link capacity and the maximum demand.

PBD requires to solve a large LP at each step, which
impacts on its scalability. Agrawal et al. [8] have proposed
a fast algorithm with multiplicative updates to solve this issue.
This recent algorithm described in Alg. 2 works for general
convex problems. It applies to i.i.d. and random order inputs.
Agrawal’s algorithm solves an online convex problem where
the objective function is defined as the difference between the
sum of rewards and the cost of accepted flows. The updates
of θ and w are standard multiplicative weight updates used
in the context of online optimization [9]. Moreover, Agrawal
et al. provide an alternative definition of competitive ratio as
the ratio between the average reward and the average optimal
reward. In this sense, the algorithm is 1 − O(ε)-competitive
for any ε > 0 such that min(B, k.OPT) > log(|E|)/ε2.

3

Algorithm 2 Agrawal’s Algorithm [8]

Initialize θ1,e = 1
1+|E| ,∀e ∈ E

Initialize w0,e = 1,∀e ∈ E
Initialize Z = OPT

(B/T)
function ROUTE(request j)

Consider G(V,E) with edge cost of Zθj,e,∀ e ∈ E
if p is a feasible min cost path in G then

Route request j on p
Perform the following multiplicative updates:
wj+1,e = wj,e(1 + ε)(rj−ue/T),∀ e ∈ E
θj+1,e =

wj,e

1+
∑

k wj,k
,∀e ∈ E

else
Reject request j

end if
end function

C. Performance Evaluation

In order to evaluate the performance of the online AC
algorithms mentioned above under realistic conditions, we
used a real-life dataset captured in 2006 by Uhlig et al. [10]
on GEANT, the high bandwidth pan-European research and
education backbone. The dataset contains a topology of 22
nodes and 36 high capacity 40G links. We evaluated the per-
centage of rejected demands under different traffic conditions.
The traffic matrix is generated with Poisson demand arrivals
at rate λ demands/s. Demands have an equal size of 200
Mb/s and a duration exponentially distributed with mean 30s.
We considered two traffic cases: i) Random where source-
destination pairs are randomly selected, and ii) Adversarial
where source-destination pairs are selected over the most
loaded path at any time. We compared the results with the
Greedy policy, that accepts all requests on the minimum cost
path whenever there is enough capacity.

The random nature of PBD however yields to some unnec-
essary rejections in intermediate traffic regimes (3 ≤ λ ≤ 5).
In more intense traffic conditions (λ ≥ 6), this becomes an
advantage and it better load balances traffic around highly
utilized paths. In the Adversarial scenario, Agrawal’s algorithm
plots the best performance, demonstrating its robustness to
adversarial behaviors. We remark that the poor performance
of EXP are due to the fact that it quickly fills shortest paths
and creates bottlenecks.

Remarkably, we notice that there is no algorithm that
outperforms all the others under all traffic conditions. This
behavior naturally calls for a machine learning technique able
to track the best AC algorithm under unknown traffic scenarios.

IV. ADMISSION CONTROL WITH EXPERTS IN SDN

As shown in the previous section, there is no admission
control (AC) algorithm that outperforms all the other ones
under all traffic conditions. Hence, due to the unpredictable
nature of traffic, it proves difficult to know a priori the identity
of the best algorithm to be utilized. We thus need an online
meta-algorithm that, based on past decisions and past rewards
obtained by the different AC algorithms, is capable to track
and follow the advice of the best AC algorithm in hindsight.

We argue that modern SDN control platforms, which are
running on top of commodity servers and are built upon
cutting-edge distributed computing technologies, enable the
execution of different algorithms at the same time to solve
a single decision problem.

This setting is classical in machine learning, and it is
commonly called prediction with expert advice [11]. To be
more formal, let us define mi,j as the traffic volume accepted
by the AC algorithm i when request j arrives. The meta-
algorithm takes its decisions iteratively, based on the profit
mi,j′ obtained by each AC algorithms i over past decision
instants j′ ≤ j.
The bulk of the literature focuses on proving theoretical
performance bounds in the basic non-reactive scenario where
the action taken by the decision maker does not affect the
state of the system. Nevertheless, our AC scenario is clearly a
reactive one, since the decision taken at time t also influences
the decisions (and the profits) of the AC algorithms at future
time instants t′ > t.

To this aim, we hence propose to use Strategic Expert meta-
Algorithm (SEA), described in Alg. 3. SEA select algorithm
i for an increasing number Ni > 1 of consecutive steps, and
does not revisit its choice at each new connection request. This
allows each online AC algorithm to approach its asymptotically
average performance. Moreover, SEA is only based on the
profit effectively obtained by each algorithm when it has been
actually selected. In other words, SEA does not exploit the
information in hindsight on the profits that would have been
obtained if a different algorithm had been used (as for FLA)2.

SEA’s performance guarantees are evaluated in terms of the
regret with respect to a (non implementable) oracle which

2For this reason, SEA also works under the Multi-Armed Bandit setting [11]

(a) Random (b) Adversarial

(c) Random (d) Adversarial

Figure 1: Performance evaluation of various online AC algorithms in terms of rejected
demands percentage under random traffic conditions (left) and adversarial ones (right),
where source-destination pairs are selected over the most loaded path at any time.

4

Figure 2: Admission Control (AC) with expert advice in SDN controller platforms.

Algorithm 3 Strategic Expert Meta-Algorithm (SEA) [2]

Set Mi = Ni = 0 for each expert i. Set k = 1.
function EXPERT SELECTION(Sequence of requests)

With probability 1/k perform an exploration phase,
namely, choose an expert i from the uniform distribution
over 1, . . . , N ; otherwise, perform an exploitation phase,
namely, choose an expert i with maximum Mi. (If such
i is not unique, select one out of a uniform distribution)

Set Ni = Ni + 1. Follow expert i for the next Ni
requests. Denote by R̃ the average payoff accumulated
during the current phase (i.e., these Ni stages), and set

Mi = Mi +
2

Ni + 1
(R̃−Mi)

Set k = k + 1.
end function

steadily selects the algorithm with best average performance,
known beforehand. In our reactive scenario, SEA is in some
sense optimal with respect to the new definition of regret hinted
above. More specifically, the expected average performance of
SEA is always superior to the single performance achieved by
the algorithm sequentially chosen by SEA itself during its play
([2], Thm. 3.1). Moreover, under some stationary conditions
on the system (in our case, of the traffic load on the links)
SEA performs on average and asymptotically as well as the
oracle ([2], Thm. 5.1).

A. Performance Evaluation
As a benchmark, we compare SEA with the classic Follow-

the-Leader meta-Algorithm (FLA) [11]. At each new connec-
tion request, FLA prescribes to follow the advice of the AC
algorithm that has best performed up to the current decision
instant. Although showing good performance in the basic non-
reactive scenario, here FLA always fails to track the best
expert. More precisely, it always ends up steadily selecting
the greedy algorithm: in fact, if we only consider the one-
step-ahead profit of the AC algorithms, the greedy algorithm
is always at least as good as the other ones.

In Fig. 3 we show the performance of the SEA expert
meta-algorithms in terms of their rejected throughput demand.
SEA runs on top of three computationally efficient online
algorithms: Greedy, AAP-pd and Agrawal’s AC algorithm.

As expected, SEA always outperforms the naive FLA.
Moreover, under some scenarios SEA even outperforms the
oracle. In fact, switching among different expert algorithms
sometimes improves the network conditions with respect to
the situation where the best algorithm is steadily chosen.

(a) Random (b) Adversarial

Figure 3: Performance evaluation of the expert meta-algorithm SEA against the oracle,
that knows beforehand the average performance of each algorithm, and the naive FLA.
Here, 3 experts to choose among are considered: Greedy, Agrawal and AAP-pd.

V. CONCLUSIONS

The ultimate aim of this paper is to raise the awareness
that the new centrally managed SDN architecture, combined
with the computational power of the SDN controller, calls for a
revisit of admission control algorithms, studied in the computer
science literature but never really implemented in practice. We
hope that our work will spur new research directions on new
AC algorithms for SDN and new expert meta-algorithms which
select the proper AC algorithm according to varying traffic
conditions.

REFERENCES

[1] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 3, pp. 1617 – 1634, 2014.

[2] D. P. de Farias and N. Megiddo, “How to combine expert (and novice)
advice when actions impact the environment?” in Advances in Neural
Information Processing Systems, 2003.

[3] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput-competitive on-line
routing,” in Proc. FOCS, 1993.

[4] R. Gawlick, A. Kamath, S. Plotkin, and K. G. Ramakrishnan, “Routing
and admission control in general topology networks,” Tech. rep., 1995.

[5] N. Buchbinder and J. Naor, “Improved bounds for online routing and
packing via a primal-dual approach.” in Proc. FOCS, 2006.

[6] N. Buchbinder and J. S. Naor, “Online primal-dual algorithms for
covering and packing,” Math. Oper. Res., vol. 34, no. 2, May 2009.

[7] T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking, “Primal beats
dual on online packing lps in the random-order model,” in Proc. ACM
STOC, 2014.

[8] S. Agrawal and N. R. Devanur, “Fast algorithms for online stochastic
convex programming,” in Proc. ACM SODA, 2015.

[9] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update
method: a meta-algorithm and applications.” Theory of Computing,
vol. 8, no. 1, pp. 121–164, 2012.

[10] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
Computer Communication Rev, vol. 36, no. 1, 2006.

[11] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
New York, NY, USA: Cambridge University Press, 2006.

