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Abstract

Because a delay tolerant network (DTN) can often be panmtiip routing is a challenge. However, routing
benefits considerably if one can take advantage of knowledgeerning node mobility. This paper addresses this
problem with a generic algorithm based on the use of a higiedsional Euclidean space, that we call MobySpace,
constructed upon nodes’ mobility patterns. We provide h@reanalysis and a large scale evaluation of routing
schemes using MobySpace by replaying real mobility tratée. specific MobySpace evaluated is based on the
frequency of visits of nodes to each possible location. Hwaluation was first presented in the proceedings of
IEEE INFOCOM 2006, but for single-copy protocols only. Here, we also @atd multi-copy routing strategies that
use MobySpace as a means to control flooding. We show thahgobased on MobySpace can achieve good
performance compared to a number of common algorithms.

I. INTRODUCTION

This paper addresses the problem of routing in delay taleretmvorks (DTNSs) [1]. It evaluates schemes
which are based on an earlier proposition [2] that turns tlebdlpm of DTN routing into a problem of
routing in a virtual space defined by the mobility patterna@des. We called this virtual space MobySpace.
By conducting simulations with real mobility traces, we hawaluated this concept using a single-copy
routing scheme [3]. The additional contribution of this pafps the evaluation of multi-copy routing
strategies that use MobySpace as a means to control flooding.

In one common DTN scenario, like the one we consider in thigepanodes are mobile and have
wireless networking capabilities. They are able to commatel with each other only when they are within
transmission range. The network suffers from frequent eotivity disruptions, making the topology
intermittently and partially connected. This means thatehis a very low probability that an end-to-end
path exists between a given pair of nodes at a given time.t&®hd paths can exist temporarily, or
may sometimes never exist, with only partial paths emergihge to these disruptions, regular ad-hoc
networking approaches to routing and transport do not wenki, new solutions must be proposed.

The Delay Tolerant Network Research Group (DTNRG) [4] has gsed an architecture [5] to support
messaging that may be used by delay tolerant applicatiorssich a context. The architecture consists
mainly of the addition of an overlay, called the bundle laydove a network’s transport layer. Messages
transferred in DTNs are called bundles. They are transfemean atomic fashion between nodes using
a transport protocol that ensures node-to-node relighllihese messages can be of any size. Nodes are
assumed to have buffers in which they can store the bundles.

The problem of routing in DTNSs is not trivial. Epidemic rougj [6], studied by Vahdat and Becker, is a
possible solution when nothing is known about the behavioodes. Since it leads to buffer overloads and
inefficient use of transmission media, one would preferrotlbundle duplication and instead use routing
heuristics that can take advantage of the context. The nwitribution of this paper is the validation
of routing schemes for DTNs that use the formalism of a highethsional Euclidean space based on
nodes’ mobility patterns, called MobySpace. We first presbe evaluation of a single-copy routing
scheme which uses this concept. Then, we extend this bytigadag routing strategies, also based on
MobySpace, which perform controlled flooding to achievetdseperformance in terms of delivery and
delay while not impacting the network too much.



We show the feasibility of the MobySpace-based routingtagiias through an instance of that virtual
space in which each dimension represents the frequencywhith a node can be found at a particular
location. We conduct simulations by replaying mobilityceea to analyse the feasibility and comparative
performance of such schemes.

[I. MOBYSPACE: A MOBILITY PATTERN SPACE

Two people having similar mobility patterns are more likédy meet each other, thus to be able to
communicate. Based on this simple principle, our propasiffj is to use the formalism of a Euclidean
virtual space, that we call BlobySpacgas a tool to help nodes make routing decisions. These dasisi
rely on the notion that a node is a good candidate for takirgjocly of a bundle if it has a mobility
pattern similar to that of the bundle’s destination. Routimglone by forwarding bundles toward nodes
that have mobility patterns that are more and more simildinéomobility pattern of the destination. Since
in the MobySpace, the mobility pattern of a node providesdasrdinates, called itslobyPoinf routing is
done by forwarding bundles toward nodes that have their Nobyt closer and closer to the MobyPoint
of the destination. Note that the MobySpace is purely a airaxpression of the mobility patterns, and
as such does not express the geographic coordinates of des §GPS or otherwise). It cannot be used
for geographic routing.

In this section, we describe manners in which mobility pagecan be characterized and the ways these
patterns can be managed by the nodes, and we discuss pdssitdeand issues surrounding the overall
concept.

A. Mobility pattern characterization

The way in which mobility patterns are characterized deiees) the number and the type of the
dimensions of the specific MobySpace. It bears repeatingtlieaMobySpace is not a physical space:
each MobyPoint summarizes some characteristics of a nogeslity pattern. Many methods could be
employed to describe a mobility pattern, but some requirgsmenust be satisfied. We want mobility
patterns to be simple to measure in order to keep them cotignally inexpensive and to reduce the
overhead associated with exchanging them between nodekeFRuore, they must be relevant to routing,
by helping nodes to take efficient routing decisions.

A mobility pattern could be based, for instance, upon historformation regarding contacts that the
node has already had. A recent study [7] by Hui et al. has shbennterest of such mobility patterns.
It highlights that contacts between people at the Infoco®52€onference follow power-laws in terms of
their duration. If we want to route a bundle from one node totlaar, we have an interest in taking the
unevenness of the distribution into consideration. Iively, it could be very efficient to transmit a bundle
to a relay that frequently encounters the destination. A y}&gace based on this kind of pattern would
be as follows. Each possible contact is an axis, and thendistalong that axis indicates an estimate
of the probability of contact. Two nodes that have a similar af contacts that they see with similar
frequencies are close in this space, whereas nodes thatvhayealifferent sets of contacts, or that see
the same contacts but with very different frequencies, ardrbm each other. It seems reasonable that
one would wish to pass a bundle to a node that is as close ablpossthe destination in this space,
because this should improve the probability that it will ®umlly reach the destination.

We might wish to consider an alternative space in which ther@ more limited number of axes. If
nodes’ visits to particular locations can be tracked, thenrobility pattern of a node can be described
by its visits to these locations. In this scenario, each emwesents a location, and the distance along
the axis represents an estimate of the probability of findingpde at that location. We can imagine that
nodes that have similar probabilities of visiting a simit@t of locations are more likely to encounter
each other than nodes that are very different in these respec

The evaluation and the comparison of the different kinds obitity patterns are kept for further studies.
In Secs. Il and IV, we test a MobySpace based on the frequeiitywhich nodes find themselves in
certain locations



B. Mobility pattern acquisition

There are several ways a node can learn its own mobility npatkérst, a node can learn its mobility
pattern by observing its environment, e.g., by studyingdstacts or its frequency of visits to different
locations. If the node requires information about its corngosition, we can assume that particular tags
are attached to each location. Alternatively, we can imagimat nodes are able to interrogate an exiting
infrastructure to obtain these patterns. This infrastmectvould act as a passive monitoring tool for pattern
calculation. The system can be accessible anywhere in #&essrer in a wired fashion or it can be located
at certain places.

Similarly, there are several ways that a node can learn thieilityopatterns of other nodes. These
mobility patterns could be spread in an epidemic fashiordddacould also spread just the most significant
coordinates of their mobility patterns to reduce bufferwggancy and network resource consumption (an
idea that we explored in [3]). We can also imagine that nodep dff their mobility patterns in repositories
placed at strategic locations, and at the same time theyteipll@ir knowledge with the content available
at the repositories. We leave the study of possible solsittorfuture work.

C. Mobility pattern usage

As mentioned in the introduction, the mobility pattern of ade determines its coordinates in the
MobySpace, i.e., the position of its associated MobyPdihe basic idea is that bundles are forwarded
to nodes having mobility patterns more and more similar &t of the destination. Formally, |éf be
the set of all nodes and be the set of all locations. The MobyPoint for a ndde= U is a point in
an n-dimensional space, where= |L|. We write my, = (cy,, ..., ¢n, ) fOr the MobyPoint of node:. The
distance between two MobyPoints is writté(n;,m;).

At a point in time,t¢, the nodek will have a set of directly connected neighbors, which weteves
Wi(t) C U. W, (t) = Wi(t) U {k} is the augmented neighborhood that contadins/obySpace routing
consists of either choosing one of these neighbors to red¢b bundle or deciding to keep the bundle.
The routing function, which we calf, chooses the neighbor that is closest to the destinatioiihe
decision for node: when sending a bundle tois taken by applying the functioff:

bif b C Wy(t), else
i € WiH(t) : d(my,my) = i ey ) d(mg,mp)

fFW(2).0) = { 1)
The choice of the distance functiehused in the routing decision process is important. Oneggttai
forward choice is Euclidean distance. Examples of otharadde functions can be found in [2].

D. Possible limits and issues

DTN routing in a contact space or a mobility space is basedhenassumption that there will be
regularities in the contacts that nodes have, or in theiicglsoof locations to visit. There is always the
possibility that we may encounter mobility patterns simii@ the ones observed with random mobility
models. The efficiency of the virtual space as a tool may bédonif nodes change their habits too
rapidly.

The Euclidean spaces that we have discussed here are finigams of number of dimensions, but in
practice the number of dimensions might be unbounded. Bhiké case, for instance, in the space we
use as a case study in Sec. Ill. Additional mechanisms mugburel to allow this.

Finally, the routing scheme presented here is based on emtdh forwarding just a single copy of a
bundle, which may be a problem in case of node failure or nteesng the system for extended periods
of time. We investigate in Sec. V strategies that use Mobg8pa perform multi-copy routing efficiently.



[1l. FREQUENCY OF VISIT BASEDMOBYSPACE

To evaluate routing based on MobySpace, we use a simple Kkisdaze that we describe in the first
part of this section. The second part introduces the myhiktta that we replay for the evaluation.

A. Description

The frequency of visit based MobySpace we evaluate workolkkssM Over a defined time interval,
each node spends some portion (possibly zero) of that tireadht of the: locations. This set of quantities
is a node’s mobility pattern, and is described by a MobyPainan n dimensional MobySpace. If we
consider the frequencies to be reliable estimates of fuybuobabilities, the coordinate of a node along
the axisk is its probability of visit for the locatiork. All MobyPoints in a given MobySpace lie in a
hyperplane, since we have:

for any pointm; = (c1,, ... ¢n,), Y _ ek, =1 2)
k=1

Recent studies of the mobility of students in a campus [8],09pbf corporate users [10], equipped
with PDAs or laptops able to be connected to wireless accetsgorks, show that they follow common
mobility patterns. They show that significant aspects oftiebavior can be characterized by power law
distributions. Specifically, the session durations andftbgquencies of the places visited by users follow
power laws. This means that users typically visit a few asqesnts frequently while visiting the others
rarely, and that users may stay at few locations for longogeriwhile visiting the others for very short
periods. Henderson et al. observed [9] thé% of users studied speiR% of their time attached to a
single access point, and this proportion decreased expathgn

B. Real mobility data used

For the purpose of this study, we sought large real mobiliacas that resembled what one might
find in an ambient network environment. Since there are vevwy traces of this kind, we chose data
that tracks mobile users in a campus setting. We used thelitpatata collected on the Wi-Fi campus
network of Dartmouth College [9]. The Dartmouth data is thestmextensive data collection available
that covers a large wireless access network. The networtingosed of aboui50 access points (APS),
the number of different wireless cards (MAC addresses) $gethe network is about3,000 and the
data have been collected between the y@afd and2004. The network covers the college’s academic
buildings, the library, the sport infrastructures, the adstrative buildings and the student residences.
Users are equipped with devices such as PDAs, laptops, amiephthat support voice over IP (VoIP).
The majority of the end users are students, who make intense of the network, especially since many
of them are required to own a laptop.

The data we analysed track users’ sessions in the wirelés®me These data have been pre-processed
by Song et al. in their prior work [11] on mobility predictiofhe traces show the time at which a node
associates or dissociates from an access point. Data wieted by a central server with the Syslog [12]
protocol. It could happen that a node does not send a disencimaessage, or that a Syslog UDP message
is lost, in which case a session is considered finished afteniButes of inactivity.

For our study, each access point represents a location. ¥enasthat two nodes (represented as
networking cards in the data) are assumed to be able to comaterwith a low range device (using
Bluetooth for instance), if they are attached at the same tiintiee same AP. This assumption is somewhat
artificial as nodes that are attached to two different AP$ #na close to each other might be able to
communicate directly. Similarly, two nodes connected te ame AP might be out of range of each
other. Nonetheless, this is the best approximation we cade mgth the data at hand.

The Wi-Fi scenario may be not a perfect fit for interactiongwaen nodes in DTNSs. Indeed, in
opposition to always-on devices carried by humans, Wi-Riasoare typically turned off, transported,



and then turned on again, thus missing potential contacts@e. However, the size, quality, and public
availability of the data set make it nonetheless one of thst fesources for this kind of study. Jones et
al. [13] and Chaintreau et al. [14] recently used these tracassimilar way.

IV. SIMULATION RESULTS

This section presents the manner in which we evaluated tiggescopy routing scheme presented in
Sec. II-C that uses a frequency of visit based MobySpace ttadesults we obtained. We first describe
the properties of thd5 days of mobility data we used.

A. Mobility traces

We replayed the mobility traces inferred from Dartmouthadbétween January 6004 and March
11" 2004. Fig. 1 shows distributions that characterize usezbalior within this period.
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Fig. 1. Statistics on the data set with all users.

Users are mobile. They visit on averagg66 locations in the period (see Fig. 1(a)) ahd5 locations
per day (see Fig. 1(b)). The distributions of the number o&tmns visited by the nodes during the period
and per day follow heavy tailed distributions. This mearet the majority of users have a low level of
mobility while some users are very mobile. Users with a lowbihity level regarding the number of
locations they visit may either be users that are not verggiein the data or users that stay in one
place, as in students who keep their laptop connected in theim at the student residence.

Users make intensive use of the network. The mean presaneefor the period i243 hours and is
5.18 hours per day (see Fig. 1(c) and Fig. 1(d)).



B. Methodology

We have implemented a stand alone simulator to perform DTNQ evaluations. This simulator only
implements the transport and network layers and it makeglsimssumptions regarding lower layers,
allowing infinite bandwidth between nodes and contentigre faccess to the medium. Nodes are also
supposed to have infinite buffers and to have inherent krdye@eof all other nodes’ mobility patterns.
Because in ambient networks, nodes may have limited resparod capabilities, routing solutions should
also be evaluated with limited buffers and more realistiddeis for the MAC and physical layers. Since
our aim here is mainly to validate the idea of MobySpace ngjtwe leave to future work a detailed
study of the modifications that would be required to accomat®desource limitations.

We compare the performance of MobySpace routing againditloeving:

. Epidemic routing This is described by Vahdat and Becker [6]: Each time two Boaheet, they
exchange their bundles. The major interest of this algarith that it provides the optimum path
and thus the minimum bundle delay. We use it here as a lowendholhis algorithm can be also
seen as the extension of Dijkstra’s shortest path algorfitmposed by Jain et al. [15] that takes into
account time-varying edge weights. In practice, epidemiding suffers from high buffer occupancy
and high bandwidth utilization.

« Opportunistic routing A node waits to meet the destination in order to transfebutsdle. The main
advantage of this method is that it involves only one trassian per bundle. Bundle delivery relies
just on the mobility of nodes and their contact opportusitie

« Random routingThere are many ways to define a random routing algorithmrdieroto design one
that acts similarly to the MobySpace-based routing scheveeattribute for each destination nogle
a preference list;, which is a randomly ordered list of all of the nodes. When aenbds a bundle
destined toj, it sends that bundle to the most preferred neighbor on tefegnce list;. If the most
preferred neighbor has a lower preference than the curwte,rthe bundle is not forwarded. This
mechanism avoids loops by construction.

« Hot potato routing When a node is at a location and the bundle’s destination trthese, the node
transfers the bundle to a neighbor chosen at random. We Itledaa rule to avoid local loops: a
node can only handle a bundle one time per location visit.

We will refer to these schemes by the following nanmtegidemic using Epidemic routing®pportunis-
tic, using Opportunistic routingRandom using Random routingPotatq using Hot potato routing, and
MobySpacgusing the routing scheme that relies on the MobySpace.

We considered the whole set 836 locations that were visited over the course of #3edays of data.
The virtual space used for routing thus H&$ dimensions. Due to the difficulty of running simulations
with the totality of the5,545 nodes, especially with Epidemic, for which computationlegps with the
number of nodes and the number of bundles generated, we ssed@ing method. We have defined two
kinds of usersactive which generate traffic, anshactive which only participate in the routing effort.
Every active node establishes a connection towardgher nodes. An active node sends one bundle per
connection. For active users, we chose only the ones thataam least one time in the first week of
the simulations in order to be able to study bundle propagaiver an extended period. In each run, we
sampled300 users with100 of them generating traffic. The simulator used a time stepsof

Note that since we do not have the knowledge of the sociatiosakhip that link users in the data
set we used, we generate source destination pairs randbimyever, in a real scenario, we envision
that it would be drastically different. People might exchardata with those that are close to them in a
sociologically way which simplify the transportation oftdaAs a consequence, the performance obtained
later in this paper may be significantly lower compared todhe we might have in a real case.

We performed5 runs for each scenario. Simulation results reported in tievfing tables are mean
results with confidence intervals at th@% confidence level, obtained using the Studedistribution.



C. Results

We evaluate the routing algorithms with respect to theingport layer performance. We consider a
good algorithm to be one that yields a low average bundleydéia highest bundle delivery ratio and a
low average route length. We consider two different kindsa#narios. One with only randomly sampled
users and one with only the most active.

With randomly sampled users

In this scenario, we pickegD0 users completely at random and we replayed their trace® wimlulating
DTN routing. Table | shows the simulation results. It shows gach of the implemented algorithms the
mean bundle delay in number of days, the mean delivery ratioch corresponds to the number of
bundles received over the number of bundles sent, and the noege length in number of hops. The
average delay and the mean route length are computed onlybaweles that were delivered.

delivery ratio delay route length
(%) (days) (hops)
Epidemic 82.0 2.7 12.5+09 7.10 +o.2
Opportunistic 4.9 106 159125 1.0 +o.0
Random 7.2 05 16.6 126 3.12 102
Potato 10.7 +1.7 19.1116 72.7 +16.5
M obySpace 14.9 12, 18.9 +1.0 3.8 +0.2
TABLE |

RESULTS WITH RANDOMLY SAMPLED USERS

The first thing we can observe is the fact that within the 45sdafysimulation there is still a certain
number of bundles that are not delivered with Epidemic. Thability of the 300 nodes or their level
of presence were not sufficient to ensure all the delivef@s. sample included jusi% of the entire
set of nodes. By deploying this system on more nodes, theedgliratio would rise closer ta00%.
Furthermore, we did not select nodes based on their mobhigyacteristics. Some of the nodes may have
poor mobility.

Table | shows that MobySpace delivers twice as many bundiéRaamdom but still far less than Epi-
demic, which does not miss any opportunities. Random dslsemewhat more bundles than Opportunistic
because the bundles are more mobile. This phenomenon isreedor Potato, which outperforms Random
but delivers fewer bundles than MobySpace. At first glantoe aiverage bundle delay of MobySpace seems
poor. We believe this average is influenced by the fact thatnbondles are delivered compared to the
other schemes, except Epidemic. The additional bundlegedetl by MobySpace might be more difficult
to route than the others, leading to higher delays. The figa®n of this issue is kept for future work.
However, the average bundle delay is an interesting inalicitthe performance an algorithm can achieve.
Looking now at the average route lengths, we see that in @lt#ses, except Potato, they are lower than
for Epidemic. MobySpace engenders routes that are aboliabdbng as those created by Epidemic.
With MobySpace, bundles are transmitted from a node to @ndibcause of their mobility patterns, not
simply because of the opportunities of contact. Potato megys routes that are extremely long because,
at each contact, bundles switch from one node to anotheatdatay not be suitable for a real system
because of bandwidth and energy consumption issues.

With the most active users

We also evaluate routing in a scenario with only the moswaaiisers, to see the effect of activity on
performance. Such a scenario might also be more typical airabient network environment. Several
metrics can characterize the level of activity. We use tlgeilegity of the users’ presence in the network,



as measured by the number of active days. The number of users idata that are active alb days is
835. We consider these users as a pool from which we sample for €awlation run.

As in Fig. 1, but here only for the most active users, Fig. 2nghdistributions that characterize the
users’ behavior. We can see that this subset of users is mtive than the other. The mean presence time
for the period is609.3 hours in total and 3.13 hours per day (see Fig. 2(c) and Fig. 2(d)), as opposed to
243 hours ands.18 hours with all the users. Users visited on averag®s locations in the period (see
Fig. 2(a)) and2.96 locations per day (see Fig. 2(b)), as opposed66 and 1.75 with all the users.
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Fig. 2. Statistics on the most active users data set.

delivery ratio delay route length
(%) (days) (hops)
Epidemic 97.8 +1.0 3.1 404 8.6 +0.2
Opportunistic 104 414 19.6 +1.9 1.0 +o0.0
Random 13.7 +1.7 18.4 +1.6 3.5 +02
Potato 37.6 1.0 20.0 0.3 | 321.0x30.0
M obySpace 46.6 +1.1 20.2 12.0 5.3 202

TABLE I
RESULTS WITH THE MOST ACTIVE USERS

Table Il shows the simulation results. Considering only tlestnactive users, more bundles are delivered
by the algorithms. MobySpace attains a delivery ratid®6% instead ofl4.9%. Note that, with respect to
what we observed, the delivery ratio of MobySpace would Heeen higher if more nodes had participated
in the scenario. However, we were limited by computatiosaliés. The average bundle delay achieved
is very low for Epidemic compared to the other algorithms. fedengths are shorter than Epidemic’s
for Opportunistic, Random, and MobySpace, whereas the gedemgth is higher for Potato compared



to the previous scenario with randomly sampled users.

The difference between the two scenarios can be seen meastyclyy looking at the delivery ratio
of Epidemic. As shown by the delivery ratio 82% obtained by Epidemic when samples are selected
among all the users, the level of presence and the mobilityodies were often not sufficient to achieve
proper routing under any circumstances. Otherwise, Epitilshould have deliveretl0% of the bundles.
Either some of the source-destination pairs were neveedirly a path over time, or certain sources and
destinations were simply not sufficiently present in thead&n the other hand, when selecting only the
most active users, Epidemic achieves a delivery ratigraf%. The small portion of bundles not delivered
comes from the fact that, in a few cases, we sampled nodesaldaho interactions with the others.

These results confirm that the MobySpace evaluated in tipgrpanhances routing as compared to
various generic approaches in an ambient network formedsbysicarrying personal devices in a campus
setting. MobySpace achieves a high delivery ratio compaoedimple algorithms like Opportunistic,
Random, or Potato.

V. CONTROLLED FLOODING STRATEGIES

The previous section has shown that MobySpace routing glesicopy mode far outperforms the other
single-copy protocols but still delivers half as many b@sdas Epidemic. The question arises: can an
intermediate scheme provide many of the benefits withousdéimee overhead as Epidemic? We investigate
here what would be the performance if MobySpace is used tdegaicontrolled flooding scheme. We
describe the methodology we used for this study and we shatv,simulation results, that low overhead
can be achieved using MobySpace while having a delivery ratighly similar to that of Epidemic.

A. Methodology

Similarly to the previous evaluations, we compare Moby®pgaased controlled flooding solutions to
other well-known multi-copy strategies. We first preserdsth well-known schemes, since the ones that
use MobySpace are variants:

. Spray and WaitUnless it meets the destination, the source transmits ya@biie bundle it carries to
the N first nodes met. These nodes are used as relays but only ftahsrbundle to the destination
if encountered.

o TTL basedThe source uses a simple Epidemic scheme but with a TTL @qu&lin order to only
reach relays that are at mdsthops away.

« Probabilistic flooding The source floods its bundle like in Epidemic. However, eeglay only
transmits/V copies to the first nodes met that do not have already it, witobability P. Otherwise,
relays act apassiverelays like in Spray and Wait.

We will refer in the rest of the paper to these algorithms apeetivelySpray F_TTL, Proba The
routing strategies based on MobySpace we evaluated ar®ltbeihg:

« MobySpace Spray to Closer and Waihis algorithm is similar to Spray, but here, copies of adian
are distributed only to the firs¥ nodes met that are closer to the destination in the MobySFdue
design choice has been motivated by the fact that we wanttease the utility of each transmission.

« MobySpace Spray to Closest and Waitis scheme acts similarly tdobySpace Spray to Closer and
Wait, but copies are distributed one after another to nodes thatlaser and closer to the destination
in the MobySpace.

« MobySpace Spray to Closer and RouBnce distributed to relays in the same fashiorSasay to
Closer and Waitbundles are normally routed with the basic MobySpace stogpy scheme toward
the destination.

« MobySpace Spray to Closest and Roudace distributed to relays in the same fashiorSasay to
Closest and Waijtbundles are normally routed with the basic MobySpace stagpy scheme toward
the destination.
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« MobySpace Probabilistic floodingrhe difference with Proba is that when bundles are sprayed a
relays, copies of bundles are distributed only to nodesgoawmser to the destination in the MobySpace
than the current relay.

« MobySpace Epidemidn this scheme, bundles are flooded like in the former Epiddmt are only
transmitted from one node to another if the node is closeh¢odestination in the MobySpace.

We refer to these schemes BiSpray MSprayT MSprayRouteMSprayTRouteMproba, MEpidemic

B. Simulation results

We performed simulations exactly as in Sec. IV. We used thmesaeeds in the random number
generator and the same subset of most active users that niietkin the Dartmouth data.

While in the evaluation of single-copy schemes, the overlegatotocols (except for Epidemic) was
directly linked to the route lengths they induced, this idormer the case with controlled flooding schemes.
As a consequence, we use a new metric in this section, whitteisotal number of transmissions that
occurred before bundle delivery (or non delivery for thdsat thever reached their destination).

Table Il presents the simulation results. This table igddid into three parts: (1) results for the main
protocols we evaluated in Sec. 1V, (2) results for the usualtincopy algorithms and (3) results for
MobySpace-driven controlled flooding solutions.

Epidemic and Opportunistic show the two extremes. The fingt delivers97.8% of bundles with an
average delay d3.1 days, an average route length&6 and74,674.0 transmissions. The second one only
delivers 10.4% of bundles with an average delay o.6 days, an average route length b and 52.2
transmissions. As seen previously, the delivery ratio fablySpace ist6.6% which is right in between
these two extremes but with an overhead closer to Oppotitimgh 2,291.6 transmissions.

Looking at the well-know multi-copy schemes we evaluated, abserve that the higher the number
of copies sent into the network, the better the deliveryoratd the higher the overhead. None of these
solutions outperforms MobySpace in delivery ratio; theyledd to a higher overhead for an equivalent
delivery ratio. For instance, Spray withi = 5 achieves0.0% delivery but with an overhead af,618.2
which is more than twice as much as MobySpace.

In some of the cases, MobySpace-based controlled floodihgi®ws improve delivery ratio while
leading to lower overhead. For instance, wittcopies distributed Spray achievas.5% delivery with
2,554.8 transmissions while MSpray obtaing.2% delivery with only2,344.8 transmissions.

In other cases, especially when the number of copies distibis high (e.g., Spray and MSpray with
N = 50,100, or Proba and MProba withV = 5, P = 0.6), the MobySpace-based solutions show a lower
delivery ratio but lead to a significantly reduced overhdd&pray with N = 5 leads to half as much
overhead while delivering onlg.3% fewer bundles. This is due to a lack of opportunism of Moby®pa
based schemes in their forwarding decisions. The averdgg deffers also from this lack. The delay for
MProba with NV =5 and P = 0.6 is 8.1 days higher than Proba with the same parameters.

MSprayRoute shows encouraging performance. With énbopies distributed, it achieve®).8% of
delivery with an overhead of only,816.4. The two variants MSprayT and MSprayRouteT have lower
overheads compared to their homologous MSPray and MSpragRatiwith, as expected, lower delivery
ratios. Note also that they were only feasible with= 5 and NV = 10 because they were not able to
distribute30 copies. There were only a few opportunities for sourcesaostfier bundles to nodes that are
closer and closer to the destination in the MobySpace.

MFlooding has one of the best results, it delive2s’% of bundles with an average delay @P days
while only using15,140.2 transmissions80% less than Epidemic).

Fig. 3 highlights the trade-off that exists between the propn of undelivered bundles and the overhead
for each class of protocols we evaluated. We see that the-ttidakes a concave form, going from the
upper left part with Opportunistic to the lower right parthvEpidemic. Since our goal is to minimize both
the overhead and the number of bundles not delivered, tbisshlows that MobySpace-based solutions
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N P | T | delivery ratio delay Overhead route length
(%) (days) (transmissions) (hops)
Epidemic 97.8 1.0 3.1 +oa4 | 74,674.0 +i378.3 8.6 +0.2
M obySpace 46.6 +1.1 20.2 +20| 2,291.6 +1401 5.3 +0.2
Opportunistic 104 +1.4 19.6 +19 52.2 169 1.0 0.0
Spray 5 35.5+2.0 184 +14 | 2,554.8 +srs 1.8 +o.0
10 50.0 +3.6 176 +10| 4,618.2 +oss 1.9 +o0.0
30 67.9+3.4 17.8 +o7| 8,525.2 +i07s 1.9 100
50 69.4 +3.0 18.1 +o7 | 9,248.4 +i166.2 1.9 +0.0
100 69.6 +3.0 18.1 +os | 9,419.6 +1ss8.3 1.9 +0.0
F_TTL 2 69.6 +3.0 18.1 +os | 9,421.2 +159.2 1.9 400
3 93.6+1.8 12.2 +1.0| 25,926.8 +s74.6 2.9 100
4 97.3+13 7.9 +o07 | 39,452.8 +1,426.7 3.7 0.0
6 97.8+1.0 46 +o05|55391.0 +1,413.7 5.2 +0.0
Proba 2 (0.1 23.6+23 194 113 1,334.4 +46.7 1.8 +0.1
2 0.2 26.2 £1.9 195 +1s8| 1,700.2 4511 2.1 +01
2 103 31.3 120 184 +15| 2,436.0 +9s3 2.6 +o01
5 |01 449 123 175 +i10| 4,378.6 +s24 2.4 100
5 0.2 61.6 +2.7 155 110 10,911.6 +3s6.0 3.6 +o0.0
5 10.3 80.2 +3.0 12.3 +os | 26,808.6 +1,562.7 5.6 +0.2
5 0.6 96.2+15 55 +o05 (58,4924 +i732:2 7.8 +0.1
10 | 0.5 97.1+13 6.1 +o7 | 55,635.8 +1209.4 6.7 +o0.1
M Spray 5 42.2 425 185 +o7 | 2,344.8 4584 1.9 +o0
10 53.6 +28 18.4 +o7 | 3,785.2 +oso 1.9 +o0.0
30 63.0 +3.9 19.2 +o0s| 5,380.0 +iss.1 1.9 +o0.0
50 63.1+3.9 19.2 108 | 5,442.8 +1941 1.9 100
100 62.1+18 19.3 +o7 | 5,363.0 +134.0 1.9 +0.0
M SprayT 5 43.6 +1.9 19.9 +o7 | 1,743.0 =649 1.9 0.0
10 44,9 119 20.1 +o7 | 1,814.0 +779 1.9 +o0.0
MSprayRoute | 5 80.8 +4.1 154 +10| 7,816.4 +2696 4.9 +o0.0
10 85.5+33 13.7 +11 | 11,853.6 +424.4 4.7 +o0.0
30 88.6 +2.7 13.2 +10 | 17,047.4 L7638 4.5 101
50 88.7 +2.7 13.2 +10 | 17,921.2 L7840 4.5 101
100 88.7 +2.7 13.2 +1.0 | 18,044.0 +s826.5 4.5 101
MSprayTRoute | 5 71.7 +3.4 174 +oo | 4,507.8 +2118 4.3 +0.1
10 72.4 135 17.4 +oo | 4,547.6 +o18.7 4.3 101
M Proba 2 |01 31.0+256 19.1 +1-2 1,291.0 +365 2.0 +01
2 102 34.6 +3.2 19.2 +10| 1,526.0 4363 2.2 101
2 03 40.8 +2:5 19.0 +12 1,908.4 +50.0 2.5 +01
5 (0.1 51.3+31 18.6 +os | 3,235.0 +s2.7 2.3 +0.0
5 10.2 61.5+209 176 +i10| 4,473.0 +i06.9 2.7 +o1
5 103 70.4 £2.0 16.9 +i10| 5,819.8 +192:1 3.0 +o1
5 0.6 87.6 424 13.6 +10| 10,154.0 +465.7 3.9 +o01
10 | 0.5 87.5+25 13.4 +10 | 11,590.6 +743.0 3.6 +0.0
M Flooding 92.8 +1.6 9.9 4112 15,140.2 +os19 4.4 101
TABLE Il

SIMULATION RESULTS FOR CONTROLLED FLOODING SCHEMES

such as MSprayRoute withh = 5 and MFlooding, which are in the bend of the curve, tend toheaa
main objective.

These results have shown that allowing multiple copies tesdm, while maintaining MobySpace’s
primary objective, which is to get closer at each transmaisso the destination in the MobySpace, is a
real benefit for the performance of DTN routing schemes.

However, as we have seen, the kind of knowledge about nodditydbat we used for routing does
not allow us, on the data we used, to achieve the same peniicemas Epidemic, in delay especially.
More knowledge, or knowledge that better characterize® modbility, would certainly improve routing
performance. The trade off is then to find the most relevafdrimation and its most efficient use
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Fig. 3. Trade-off between delivery and overhead.

for routing, without impacting the network too much in tegnier instance, of computation power

required by nodes or amount of information shared among sidéerthermore, the difference between
the results obtained with MobySpace and that of Epidemichinip explained by the fact that a large
number of interactions are simply not predictable becafiskeocomplexity hidden in node connectivity

patterns. MobySpace-based solutions are not able to takentadje of these unpredicted interactions,
while Epidemic is.

VI. RELATED WORK

The case of only opportunistic contacts has been analyz&tlhgat and Becker [6] using the epidemic
routing scheme that consists of flooding. In order to conflic@ding in DTN, Spyropoulos et al. have
introduced the Spray and Wait [16] protocol that distrilsuéenumber of copies to relays and then waits
until the destination meets one of them. Harras et al. [1¥ehavaluated simple controlled message
flooding schemes with heuristics based, for instance, onlinaigs or timeouts. They also introduce a
mechanism based on bundle erasure. Once a message arrihesdastination after basic flooding, the
remaining copies in the buffers of other nodes are erasedl tvé proposed scheme. Wang et al. [18]
reincode the messages with erasure codes and distributedifferent parts over a large number of
relays, so that the original messages can be reconstitwesd i not all bundles are received. Chen et
al [19] have proposed a solution that combines the strengitnegorevious erasure coding scheme and the
advantages of aggressive forwarding as in epidemic routiigmer et al. [20] have explored network
coding techniques. All these approaches distribute meltppies of bundles, they ensure a high reliability
of delivery, and a low latency, but they imply high buffer apancy and high bandwidth consumption.

A large amount of work concerning routing in DTNs has alsorbperformed with predicted contacts,
such as the algorithm of Lindgren et al. [21], which reliesnmales having a community mobility pattern.
Nodes mainly remain inside their community and sometimeg the others. As a consequence, a node
may transfer a bundle to a node that belongs to the same coitynagrthe destination. This algorithm has
been designed as a possible solution to provide Internetemivity to the Saami [22] population who live
in Swedish Lapland with a yearly cycle dictated by the ndtbedavior of reindeer. In a similar manner,
Burns et al. [23] propose a routing algorithm that uses pasjuiencies of contacts. Also making use of
past contacts, Davis et al. [24] improved the basic epidesnfeeme with the introduction of adaptive
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dropping policies. Recently, Musolesi et al. [25] have idtroed a generic method that uses Kalman
filters to combine and evaluate the multiple dimensions efdbntext in which nodes are in order to take
routing decisions. The context is made of measurementsntidgs perform periodically, which can be

related to connectivity, but not necessarily. This meckranallows network architects to define their own
hierarchy among the different context attributes.

VII. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper has been the validatioa generic routing scheme that uses the
formalism of a high-dimensional Euclidean space constdicpon mobility patterns, the MobySpace. We
have shown, through the replay of real mobility traces, thaan applied to DTNs and that it can bring
benefits in terms of enhanced bundle delivery and reducedncomeation costs. We have evaluated the
use of MobySpace not only for single-copy routing, but alscaaneans to drive and improve existing
basic controlled flooding solutions.

Future work along these lines might include studies conogrithe impact of the structure of the
Euclidean space, i.e., the number and type of dimensiomstrensimilarity function. Different kinds of
Euclidean space can be investigated by considering schigeethe one described in Sec. Il that takes
for each dimension the frequency of contacts between aicgutar of nodes or the one that captures
cyclic frequential properties during nodes’ visits to Iboas.

Work also remains to be done on the stability of mobility eats over time and their ability to be
learned by nodes. The patterns may contain long term and sfron dependencies, as pointed out by
Ghosh et al. [26]. Nodes can have different mobility patiethmat are each stable. For instance, they can
have one for the week-ends, one for the vacations, and ongdiking weeks.

Additionally, further validations is needed on real data @am different environments. MobySpace can
be tested on traces coming from larger cell networks, likdéiG®tworks. We might also want to evaluate
MobySpace in different social contexts where nodes haveifgpenobility patterns.
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