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Abstract

Because a delay tolerant network (DTN) can often be partitioned, routing is a challenge. However, routing
benefits considerably if one can take advantage of knowledgeconcerning node mobility. This paper addresses this
problem with a generic algorithm based on the use of a high-dimensional Euclidean space, that we call MobySpace,
constructed upon nodes’ mobility patterns. We provide herean analysis and a large scale evaluation of routing
schemes using MobySpace by replaying real mobility traces.The specific MobySpace evaluated is based on the
frequency of visits of nodes to each possible location. Thisevaluation was first presented in the proceedings of
IEEE INFOCOM 2006, but for single-copy protocols only. Here, we also evaluate multi-copy routing strategies that
use MobySpace as a means to control flooding. We show that routing based on MobySpace can achieve good
performance compared to a number of common algorithms.

I. I NTRODUCTION

This paper addresses the problem of routing in delay tolerant networks (DTNs) [1]. It evaluates schemes
which are based on an earlier proposition [2] that turns the problem of DTN routing into a problem of
routing in a virtual space defined by the mobility patterns ofnodes. We called this virtual space MobySpace.
By conducting simulations with real mobility traces, we haveevaluated this concept using a single-copy
routing scheme [3]. The additional contribution of this paper is the evaluation of multi-copy routing
strategies that use MobySpace as a means to control flooding.

In one common DTN scenario, like the one we consider in this paper, nodes are mobile and have
wireless networking capabilities. They are able to communicate with each other only when they are within
transmission range. The network suffers from frequent connectivity disruptions, making the topology
intermittently and partially connected. This means that there is a very low probability that an end-to-end
path exists between a given pair of nodes at a given time. End-to-end paths can exist temporarily, or
may sometimes never exist, with only partial paths emerging. Due to these disruptions, regular ad-hoc
networking approaches to routing and transport do not work,and new solutions must be proposed.

The Delay Tolerant Network Research Group (DTNRG) [4] has proposed an architecture [5] to support
messaging that may be used by delay tolerant applications insuch a context. The architecture consists
mainly of the addition of an overlay, called the bundle layer, above a network’s transport layer. Messages
transferred in DTNs are called bundles. They are transferred in an atomic fashion between nodes using
a transport protocol that ensures node-to-node reliability. These messages can be of any size. Nodes are
assumed to have buffers in which they can store the bundles.

The problem of routing in DTNs is not trivial. Epidemic routing [6], studied by Vahdat and Becker, is a
possible solution when nothing is known about the behavior of nodes. Since it leads to buffer overloads and
inefficient use of transmission media, one would prefer to limit bundle duplication and instead use routing
heuristics that can take advantage of the context. The main contribution of this paper is the validation
of routing schemes for DTNs that use the formalism of a high-dimensional Euclidean space based on
nodes’ mobility patterns, called MobySpace. We first present the evaluation of a single-copy routing
scheme which uses this concept. Then, we extend this by investigating routing strategies, also based on
MobySpace, which perform controlled flooding to achieve better performance in terms of delivery and
delay while not impacting the network too much.
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We show the feasibility of the MobySpace-based routing strategies through an instance of that virtual
space in which each dimension represents the frequency withwhich a node can be found at a particular
location. We conduct simulations by replaying mobility traces to analyse the feasibility and comparative
performance of such schemes.

II. M OBYSPACE: A MOBILITY PATTERN SPACE

Two people having similar mobility patterns are more likelyto meet each other, thus to be able to
communicate. Based on this simple principle, our proposition [2] is to use the formalism of a Euclidean
virtual space, that we call aMobySpace, as a tool to help nodes make routing decisions. These decisions
rely on the notion that a node is a good candidate for taking custody of a bundle if it has a mobility
pattern similar to that of the bundle’s destination. Routingis done by forwarding bundles toward nodes
that have mobility patterns that are more and more similar tothe mobility pattern of the destination. Since
in the MobySpace, the mobility pattern of a node provides itscoordinates, called itsMobyPoint, routing is
done by forwarding bundles toward nodes that have their MobyPoint closer and closer to the MobyPoint
of the destination. Note that the MobySpace is purely a virtual expression of the mobility patterns, and
as such does not express the geographic coordinates of the nodes (GPS or otherwise). It cannot be used
for geographic routing.

In this section, we describe manners in which mobility patterns can be characterized and the ways these
patterns can be managed by the nodes, and we discuss possiblelimits and issues surrounding the overall
concept.

A. Mobility pattern characterization

The way in which mobility patterns are characterized determines the number and the type of the
dimensions of the specific MobySpace. It bears repeating that the MobySpace is not a physical space:
each MobyPoint summarizes some characteristics of a node’smobility pattern. Many methods could be
employed to describe a mobility pattern, but some requirements must be satisfied. We want mobility
patterns to be simple to measure in order to keep them computationally inexpensive and to reduce the
overhead associated with exchanging them between nodes. Furthermore, they must be relevant to routing,
by helping nodes to take efficient routing decisions.

A mobility pattern could be based, for instance, upon historic information regarding contacts that the
node has already had. A recent study [7] by Hui et al. has shownthe interest of such mobility patterns.
It highlights that contacts between people at the Infocom 2005 conference follow power-laws in terms of
their duration. If we want to route a bundle from one node to another, we have an interest in taking the
unevenness of the distribution into consideration. Intuitively, it could be very efficient to transmit a bundle
to a relay that frequently encounters the destination. A MobySpace based on this kind of pattern would
be as follows. Each possible contact is an axis, and the distance along that axis indicates an estimate
of the probability of contact. Two nodes that have a similar set of contacts that they see with similar
frequencies are close in this space, whereas nodes that havevery different sets of contacts, or that see
the same contacts but with very different frequencies, are far from each other. It seems reasonable that
one would wish to pass a bundle to a node that is as close as possible to the destination in this space,
because this should improve the probability that it will eventually reach the destination.

We might wish to consider an alternative space in which thereis a more limited number of axes. If
nodes’ visits to particular locations can be tracked, then the mobility pattern of a node can be described
by its visits to these locations. In this scenario, each axisrepresents a location, and the distance along
the axis represents an estimate of the probability of findinga node at that location. We can imagine that
nodes that have similar probabilities of visiting a similarset of locations are more likely to encounter
each other than nodes that are very different in these respects.

The evaluation and the comparison of the different kinds of mobility patterns are kept for further studies.
In Secs. III and IV, we test a MobySpace based on the frequencywith which nodes find themselves in
certain locations
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B. Mobility pattern acquisition

There are several ways a node can learn its own mobility pattern. First, a node can learn its mobility
pattern by observing its environment, e.g., by studying itscontacts or its frequency of visits to different
locations. If the node requires information about its current position, we can assume that particular tags
are attached to each location. Alternatively, we can imagine that nodes are able to interrogate an exiting
infrastructure to obtain these patterns. This infrastructure would act as a passive monitoring tool for pattern
calculation. The system can be accessible anywhere in a wireless or in a wired fashion or it can be located
at certain places.

Similarly, there are several ways that a node can learn the mobility patterns of other nodes. These
mobility patterns could be spread in an epidemic fashion. Nodes could also spread just the most significant
coordinates of their mobility patterns to reduce buffer occupancy and network resource consumption (an
idea that we explored in [3]). We can also imagine that nodes drop off their mobility patterns in repositories
placed at strategic locations, and at the same time they update their knowledge with the content available
at the repositories. We leave the study of possible solutions to future work.

C. Mobility pattern usage

As mentioned in the introduction, the mobility pattern of a node determines its coordinates in the
MobySpace, i.e., the position of its associated MobyPoint.The basic idea is that bundles are forwarded
to nodes having mobility patterns more and more similar to that of the destination. Formally, letU be
the set of all nodes andL be the set of all locations. The MobyPoint for a nodek ∈ U is a point in
an n-dimensional space, wheren = |L|. We write mk = (c1k

, ..., cnk
) for the MobyPoint of nodek. The

distance between two MobyPoints is writtend(mi,mj).
At a point in time,t, the nodek will have a set of directly connected neighbors, which we write as

Wk(t) ⊆ U . W+
k (t) = Wk(t) ∪ {k} is the augmented neighborhood that containsk. MobySpace routing

consists of either choosing one of these neighbors to receive the bundle or deciding to keep the bundle.
The routing function, which we callf , chooses the neighbor that is closest to the destination,b. The
decision for nodek when sending a bundle tob is taken by applying the functionf :

f(W+
k (t),b) =

{

b if b ⊂ Wk(t), else
i ∈ W+

k (t) : d(mi,mb) = minj∈W
+

k
(t) d(mj,mb)

(1)

The choice of the distance functiond used in the routing decision process is important. One straight-
forward choice is Euclidean distance. Examples of other distance functions can be found in [2].

D. Possible limits and issues

DTN routing in a contact space or a mobility space is based on the assumption that there will be
regularities in the contacts that nodes have, or in their choices of locations to visit. There is always the
possibility that we may encounter mobility patterns similar to the ones observed with random mobility
models. The efficiency of the virtual space as a tool may be limited if nodes change their habits too
rapidly.

The Euclidean spaces that we have discussed here are finite interms of number of dimensions, but in
practice the number of dimensions might be unbounded. This is the case, for instance, in the space we
use as a case study in Sec. III. Additional mechanisms must befound to allow this.

Finally, the routing scheme presented here is based on each node forwarding just a single copy of a
bundle, which may be a problem in case of node failure or nodesleaving the system for extended periods
of time. We investigate in Sec. V strategies that use MobySpace to perform multi-copy routing efficiently.
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III. F REQUENCY OF VISIT BASEDMOBYSPACE

To evaluate routing based on MobySpace, we use a simple kind of space that we describe in the first
part of this section. The second part introduces the mobility data that we replay for the evaluation.

A. Description

The frequency of visit based MobySpace we evaluate works as follow. Over a defined time interval,
each node spends some portion (possibly zero) of that time ateach of then locations. This set of quantities
is a node’s mobility pattern, and is described by a MobyPointin an n dimensional MobySpace. If we
consider the frequencies to be reliable estimates of futureprobabilities, the coordinate of a node along
the axisk is its probability of visit for the locationk. All MobyPoints in a given MobySpace lie in a
hyperplane, since we have:

for any pointmi = (c1i
, ..., cni

),
n

∑

k=1

cki
= 1 (2)

Recent studies of the mobility of students in a campus [8], [9]or of corporate users [10], equipped
with PDAs or laptops able to be connected to wireless access networks, show that they follow common
mobility patterns. They show that significant aspects of thebehavior can be characterized by power law
distributions. Specifically, the session durations and thefrequencies of the places visited by users follow
power laws. This means that users typically visit a few access points frequently while visiting the others
rarely, and that users may stay at few locations for long periods while visiting the others for very short
periods. Henderson et al. observed [9] that50% of users studied spent62% of their time attached to a
single access point, and this proportion decreased exponentially.

B. Real mobility data used

For the purpose of this study, we sought large real mobility traces that resembled what one might
find in an ambient network environment. Since there are very few traces of this kind, we chose data
that tracks mobile users in a campus setting. We used the mobility data collected on the Wi-Fi campus
network of Dartmouth College [9]. The Dartmouth data is the most extensive data collection available
that covers a large wireless access network. The network is composed of about550 access points (APs),
the number of different wireless cards (MAC addresses) seenby the network is about13,000 and the
data have been collected between the years2001 and 2004. The network covers the college’s academic
buildings, the library, the sport infrastructures, the administrative buildings and the student residences.
Users are equipped with devices such as PDAs, laptops, and phones that support voice over IP (VoIP).
The majority of the end users are students, who make intensive use of the network, especially since many
of them are required to own a laptop.

The data we analysed track users’ sessions in the wireless network. These data have been pre-processed
by Song et al. in their prior work [11] on mobility prediction. The traces show the time at which a node
associates or dissociates from an access point. Data were collected by a central server with the Syslog [12]
protocol. It could happen that a node does not send a dissociation message, or that a Syslog UDP message
is lost, in which case a session is considered finished after 30 minutes of inactivity.

For our study, each access point represents a location. We assume that two nodes (represented as
networking cards in the data) are assumed to be able to communicate with a low range device (using
Bluetooth for instance), if they are attached at the same timeto the same AP. This assumption is somewhat
artificial as nodes that are attached to two different APs that are close to each other might be able to
communicate directly. Similarly, two nodes connected to the same AP might be out of range of each
other. Nonetheless, this is the best approximation we can make with the data at hand.

The Wi-Fi scenario may be not a perfect fit for interactions between nodes in DTNs. Indeed, in
opposition to always-on devices carried by humans, Wi-Fi nodes are typically turned off, transported,
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and then turned on again, thus missing potential contacts enroute. However, the size, quality, and public
availability of the data set make it nonetheless one of the best resources for this kind of study. Jones et
al. [13] and Chaintreau et al. [14] recently used these tracesin a similar way.

IV. SIMULATION RESULTS

This section presents the manner in which we evaluated the single-copy routing scheme presented in
Sec. II-C that uses a frequency of visit based MobySpace, andthe results we obtained. We first describe
the properties of the45 days of mobility data we used.

A. Mobility traces

We replayed the mobility traces inferred from Dartmouth data between January 26th 2004 and March
11th 2004. Fig. 1 shows distributions that characterize users’ behavior within this period.
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Fig. 1. Statistics on the data set with all users.

Users are mobile. They visit on average16.66 locations in the period (see Fig. 1(a)) and1.75 locations
per day (see Fig. 1(b)). The distributions of the number of locations visited by the nodes during the period
and per day follow heavy tailed distributions. This means that the majority of users have a low level of
mobility while some users are very mobile. Users with a low mobility level regarding the number of
locations they visit may either be users that are not very present in the data or users that stay in one
place, as in students who keep their laptop connected in their room at the student residence.

Users make intensive use of the network. The mean presence time for the period is243 hours and is
5.18 hours per day (see Fig. 1(c) and Fig. 1(d)).
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B. Methodology

We have implemented a stand alone simulator to perform DTN routing evaluations. This simulator only
implements the transport and network layers and it makes simple assumptions regarding lower layers,
allowing infinite bandwidth between nodes and contention free access to the medium. Nodes are also
supposed to have infinite buffers and to have inherent knowledge of all other nodes’ mobility patterns.
Because in ambient networks, nodes may have limited resources and capabilities, routing solutions should
also be evaluated with limited buffers and more realistic models for the MAC and physical layers. Since
our aim here is mainly to validate the idea of MobySpace routing, we leave to future work a detailed
study of the modifications that would be required to accommodate resource limitations.

We compare the performance of MobySpace routing against thefollowing:
• Epidemic routing: This is described by Vahdat and Becker [6]: Each time two nodes meet, they

exchange their bundles. The major interest of this algorithm is that it provides the optimum path
and thus the minimum bundle delay. We use it here as a lower bound. This algorithm can be also
seen as the extension of Dijkstra’s shortest path algorithmproposed by Jain et al. [15] that takes into
account time-varying edge weights. In practice, epidemic routing suffers from high buffer occupancy
and high bandwidth utilization.

• Opportunistic routing: A node waits to meet the destination in order to transfer itsbundle. The main
advantage of this method is that it involves only one transmission per bundle. Bundle delivery relies
just on the mobility of nodes and their contact opportunities.

• Random routing: There are many ways to define a random routing algorithm. In order to design one
that acts similarly to the MobySpace-based routing scheme,we attribute for each destination nodej

a preference listlj, which is a randomly ordered list of all of the nodes. When a node has a bundle
destined toj, it sends that bundle to the most preferred neighbor on the preference listlj. If the most
preferred neighbor has a lower preference than the current node, the bundle is not forwarded. This
mechanism avoids loops by construction.

• Hot potato routing: When a node is at a location and the bundle’s destination in not there, the node
transfers the bundle to a neighbor chosen at random. We have added a rule to avoid local loops: a
node can only handle a bundle one time per location visit.

We will refer to these schemes by the following names:Epidemic, using Epidemic routing;Opportunis-
tic, using Opportunistic routing;Random, using Random routing;Potato, using Hot potato routing, and
MobySpace, using the routing scheme that relies on the MobySpace.

We considered the whole set of536 locations that were visited over the course of the45 days of data.
The virtual space used for routing thus has536 dimensions. Due to the difficulty of running simulations
with the totality of the5,545 nodes, especially with Epidemic, for which computation explodes with the
number of nodes and the number of bundles generated, we used asampling method. We have defined two
kinds of users:active, which generate traffic, andinactive, which only participate in the routing effort.
Every active node establishes a connection towards5 other nodes. An active node sends one bundle per
connection. For active users, we chose only the ones that appear at least one time in the first week of
the simulations in order to be able to study bundle propagation over an extended period. In each run, we
sampled300 users with100 of them generating traffic. The simulator used a time step of1s.

Note that since we do not have the knowledge of the social relationship that link users in the data
set we used, we generate source destination pairs randomly.However, in a real scenario, we envision
that it would be drastically different. People might exchange data with those that are close to them in a
sociologically way which simplify the transportation of data. As a consequence, the performance obtained
later in this paper may be significantly lower compared to theone we might have in a real case.

We performed5 runs for each scenario. Simulation results reported in the following tables are mean
results with confidence intervals at the90% confidence level, obtained using the Studentt distribution.



7

C. Results

We evaluate the routing algorithms with respect to their transport layer performance. We consider a
good algorithm to be one that yields a low average bundle delay, the highest bundle delivery ratio and a
low average route length. We consider two different kinds ofscenarios. One with only randomly sampled
users and one with only the most active.

With randomly sampled users

In this scenario, we picked300 users completely at random and we replayed their traces while simulating
DTN routing. Table I shows the simulation results. It shows for each of the implemented algorithms the
mean bundle delay in number of days, the mean delivery ratio,which corresponds to the number of
bundles received over the number of bundles sent, and the mean route length in number of hops. The
average delay and the mean route length are computed only over bundles that were delivered.

delivery ratio delay route length
(%) (days) (hops)

Epidemic 82.0±2.7 12.5±0.9 7.10±0.2

Opportunistic 4.9 ±0.6 15.9±2.5 1.0 ±0.0

Random 7.2 ±0.5 16.6±2.6 3.12±0.2

Potato 10.7±1.7 19.1±1.6 72.7±16.5

MobySpace 14.9±2.9 18.9±1.0 3.8 ±0.2

TABLE I

RESULTS WITH RANDOMLY SAMPLED USERS.

The first thing we can observe is the fact that within the 45 days of simulation there is still a certain
number of bundles that are not delivered with Epidemic. The mobility of the 300 nodes or their level
of presence were not sufficient to ensure all the deliveries.Our sample included just5% of the entire
set of nodes. By deploying this system on more nodes, the delivery ratio would rise closer to100%.
Furthermore, we did not select nodes based on their mobilitycharacteristics. Some of the nodes may have
poor mobility.

Table I shows that MobySpace delivers twice as many bundles as Random but still far less than Epi-
demic, which does not miss any opportunities. Random delivers somewhat more bundles than Opportunistic
because the bundles are more mobile. This phenomenon is eventrue for Potato, which outperforms Random
but delivers fewer bundles than MobySpace. At first glance, the average bundle delay of MobySpace seems
poor. We believe this average is influenced by the fact that more bundles are delivered compared to the
other schemes, except Epidemic. The additional bundles delivered by MobySpace might be more difficult
to route than the others, leading to higher delays. The investigation of this issue is kept for future work.
However, the average bundle delay is an interesting indicator of the performance an algorithm can achieve.
Looking now at the average route lengths, we see that in all the cases, except Potato, they are lower than
for Epidemic. MobySpace engenders routes that are about half as long as those created by Epidemic.
With MobySpace, bundles are transmitted from a node to another because of their mobility patterns, not
simply because of the opportunities of contact. Potato engenders routes that are extremely long because,
at each contact, bundles switch from one node to another. Potato may not be suitable for a real system
because of bandwidth and energy consumption issues.

With the most active users

We also evaluate routing in a scenario with only the most active users, to see the effect of activity on
performance. Such a scenario might also be more typical of anambient network environment. Several
metrics can characterize the level of activity. We use the regularity of the users’ presence in the network,
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as measured by the number of active days. The number of users in our data that are active all45 days is
835. We consider these users as a pool from which we sample for each simulation run.

As in Fig. 1, but here only for the most active users, Fig. 2 shows distributions that characterize the
users’ behavior. We can see that this subset of users is more active than the other. The mean presence time
for the period is609.3 hours in total and13.13 hours per day (see Fig. 2(c) and Fig. 2(d)), as opposed to
243 hours and5.18 hours with all the users. Users visited on average20.65 locations in the period (see
Fig. 2(a)) and2.96 locations per day (see Fig. 2(b)), as opposed to16.66 and1.75 with all the users.
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Fig. 2. Statistics on the most active users data set.

delivery ratio delay route length
(%) (days) (hops)

Epidemic 97.8±1.0 3.1 ±0.4 8.6 ±0.2

Opportunistic 10.4±1.4 19.6±1.9 1.0 ±0.0

Random 13.7±1.7 18.4±1.6 3.5 ±0.2

Potato 37.6±1.0 20.0±0.3 321.0±30.0

MobySpace 46.6±1.1 20.2±2.0 5.3 ±0.2

TABLE II

RESULTS WITH THE MOST ACTIVE USERS.

Table II shows the simulation results. Considering only the most active users, more bundles are delivered
by the algorithms. MobySpace attains a delivery ratio of46.6% instead of14.9%. Note that, with respect to
what we observed, the delivery ratio of MobySpace would havebeen higher if more nodes had participated
in the scenario. However, we were limited by computational issues. The average bundle delay achieved
is very low for Epidemic compared to the other algorithms. Route lengths are shorter than Epidemic’s
for Opportunistic, Random, and MobySpace, whereas the average length is higher for Potato compared
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to the previous scenario with randomly sampled users.
The difference between the two scenarios can be seen most clearly by looking at the delivery ratio

of Epidemic. As shown by the delivery ratio of82% obtained by Epidemic when samples are selected
among all the users, the level of presence and the mobility ofnodes were often not sufficient to achieve
proper routing under any circumstances. Otherwise, Epidemic should have delivered100% of the bundles.
Either some of the source-destination pairs were never linked by a path over time, or certain sources and
destinations were simply not sufficiently present in the data. On the other hand, when selecting only the
most active users, Epidemic achieves a delivery ratio of97.8%. The small portion of bundles not delivered
comes from the fact that, in a few cases, we sampled nodes thathad no interactions with the others.

These results confirm that the MobySpace evaluated in this paper enhances routing as compared to
various generic approaches in an ambient network formed by users carrying personal devices in a campus
setting. MobySpace achieves a high delivery ratio comparedto simple algorithms like Opportunistic,
Random, or Potato.

V. CONTROLLED FLOODING STRATEGIES

The previous section has shown that MobySpace routing in single-copy mode far outperforms the other
single-copy protocols but still delivers half as many bundles as Epidemic. The question arises: can an
intermediate scheme provide many of the benefits without thesame overhead as Epidemic? We investigate
here what would be the performance if MobySpace is used to guide a controlled flooding scheme. We
describe the methodology we used for this study and we show, with simulation results, that low overhead
can be achieved using MobySpace while having a delivery ratio roughly similar to that of Epidemic.

A. Methodology

Similarly to the previous evaluations, we compare MobySpace-based controlled flooding solutions to
other well-known multi-copy strategies. We first present these well-known schemes, since the ones that
use MobySpace are variants:

• Spray and Wait: Unless it meets the destination, the source transmits a copy of the bundle it carries to
theN first nodes met. These nodes are used as relays but only transmit the bundle to the destination
if encountered.

• TTL based: The source uses a simple Epidemic scheme but with a TTL equalto T in order to only
reach relays that are at mostT hops away.

• Probabilistic flooding: The source floods its bundle like in Epidemic. However, eachrelay only
transmitsN copies to the first nodes met that do not have already it, with aprobabilityP . Otherwise,
relays act aspassiverelays like in Spray and Wait.

We will refer in the rest of the paper to these algorithms as respectivelySpray, F TTL, Proba. The
routing strategies based on MobySpace we evaluated are the following:

• MobySpace Spray to Closer and Wait: This algorithm is similar to Spray, but here, copies of a bundle
are distributed only to the firstN nodes met that are closer to the destination in the MobySpace. This
design choice has been motivated by the fact that we want to increase the utility of each transmission.

• MobySpace Spray to Closest and Wait: This scheme acts similarly toMobySpace Spray to Closer and
Wait, but copies are distributed one after another to nodes that are closer and closer to the destination
in the MobySpace.

• MobySpace Spray to Closer and Route: Once distributed to relays in the same fashion asSpray to
Closer and Wait, bundles are normally routed with the basic MobySpace single-copy scheme toward
the destination.

• MobySpace Spray to Closest and Route: Once distributed to relays in the same fashion asSpray to
Closest and Wait, bundles are normally routed with the basic MobySpace single-copy scheme toward
the destination.
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• MobySpace Probabilistic flooding: The difference with Proba is that when bundles are sprayed at
relays, copies of bundles are distributed only to nodes being closer to the destination in the MobySpace
than the current relay.

• MobySpace Epidemic: In this scheme, bundles are flooded like in the former Epidemic but are only
transmitted from one node to another if the node is closer to the destination in the MobySpace.

We refer to these schemes asMSpray, MSprayT, MSprayRoute, MSprayTRoute, Mproba, MEpidemic.

B. Simulation results

We performed simulations exactly as in Sec. IV. We used the same seeds in the random number
generator and the same subset of most active users that we identified in the Dartmouth data.

While in the evaluation of single-copy schemes, the overheadof protocols (except for Epidemic) was
directly linked to the route lengths they induced, this is nolonger the case with controlled flooding schemes.
As a consequence, we use a new metric in this section, which isthe total number of transmissions that
occurred before bundle delivery (or non delivery for those that never reached their destination).

Table III presents the simulation results. This table is divided into three parts: (1) results for the main
protocols we evaluated in Sec. IV, (2) results for the usual multi-copy algorithms and (3) results for
MobySpace-driven controlled flooding solutions.

Epidemic and Opportunistic show the two extremes. The first one delivers97.8% of bundles with an
average delay of3.1 days, an average route length of8.6 and74,674.0 transmissions. The second one only
delivers10.4% of bundles with an average delay of19.6 days, an average route length of1.0 and 52.2
transmissions. As seen previously, the delivery ratio for MobySpace is46.6% which is right in between
these two extremes but with an overhead closer to Opportunistic with 2,291.6 transmissions.

Looking at the well-know multi-copy schemes we evaluated, we observe that the higher the number
of copies sent into the network, the better the delivery ratio and the higher the overhead. None of these
solutions outperforms MobySpace in delivery ratio; they all lead to a higher overhead for an equivalent
delivery ratio. For instance, Spray withN = 5 achieves50.0% delivery but with an overhead of4,618.2
which is more than twice as much as MobySpace.

In some of the cases, MobySpace-based controlled flooding solutions improve delivery ratio while
leading to lower overhead. For instance, with5 copies distributed Spray achieves35.5% delivery with
2,554.8 transmissions while MSpray obtains42.2% delivery with only2,344.8 transmissions.

In other cases, especially when the number of copies distributed is high (e.g., Spray and MSpray with
N = 50,100, or Proba and MProba withN = 5, P = 0.6), the MobySpace-based solutions show a lower
delivery ratio but lead to a significantly reduced overhead.MSpray with N = 5 leads to half as much
overhead while delivering only6.3% fewer bundles. This is due to a lack of opportunism of MobySpace
based schemes in their forwarding decisions. The average delay suffers also from this lack. The delay for
MProba withN = 5 andP = 0.6 is 8.1 days higher than Proba with the same parameters.

MSprayRoute shows encouraging performance. With only5 copies distributed, it achieves80.8% of
delivery with an overhead of only7,816.4. The two variants MSprayT and MSprayRouteT have lower
overheads compared to their homologous MSPray and MSprayRoute but with, as expected, lower delivery
ratios. Note also that they were only feasible withN = 5 and N = 10 because they were not able to
distribute30 copies. There were only a few opportunities for sources to transfer bundles to nodes that are
closer and closer to the destination in the MobySpace.

MFlooding has one of the best results, it delivers92.8% of bundles with an average delay of9.9 days
while only using15,140.2 transmissions (80% less than Epidemic).

Fig. 3 highlights the trade-off that exists between the proportion of undelivered bundles and the overhead
for each class of protocols we evaluated. We see that the trade-off takes a concave form, going from the
upper left part with Opportunistic to the lower right part with Epidemic. Since our goal is to minimize both
the overhead and the number of bundles not delivered, this plot shows that MobySpace-based solutions
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N P T delivery ratio delay Overhead route length
(%) (days) (transmissions) (hops)

Epidemic 97.8±1.0 3.1 ±0.4 74,674.0 ±1378.3 8.6 ±0.2

MobySpace 46.6±1.1 20.2 ±2.0 2,291.6 ±140.1 5.3 ±0.2

Opportunistic 10.4±1.4 19.6 ±1.9 52.2 ±6.9 1.0 ±0.0

Spray 5 35.5±2.0 18.4 ±1.4 2,554.8 ±37.8 1.8 ±0.0

10 50.0±3.6 17.6 ±1.0 4,618.2 ±98.6 1.9 ±0.0

30 67.9±3.4 17.8 ±0.7 8,525.2 ±107.5 1.9 ±0.0

50 69.4±3.0 18.1 ±0.7 9,248.4 ±166.2 1.9 ±0.0

100 69.6±3.0 18.1 ±0.8 9,419.6 ±158.3 1.9 ±0.0

F TTL 2 69.6±3.0 18.1 ±0.8 9,421.2 ±159.2 1.9 ±0.0

3 93.6±1.8 12.2 ±1.0 25,926.8 ±874.6 2.9 ±0.0

4 97.3±1.3 7.9 ±0.7 39,452.8 ±1,426.7 3.7 ±0.0

6 97.8±1.0 4.6 ±0.5 55,391.0 ±1,413.7 5.2 ±0.0

Proba 2 0.1 23.6±2.3 19.4 ±1.3 1,334.4 ±46.7 1.8 ±0.1

2 0.2 26.2±1.9 19.5 ±1.8 1,700.2 ±51.1 2.1 ±0.1

2 0.3 31.3±2.0 18.4 ±1.5 2,436.0 ±98.3 2.6 ±0.1

5 0.1 44.9±2.3 17.5 ±1.0 4,378.6 ±82.4 2.4 ±0.0

5 0.2 61.6±2.7 15.5 ±1.0 10,911.6 ±386.0 3.6 ±0.0

5 0.3 80.2±3.0 12.3 ±0.8 26,808.6 ±1,562.7 5.6 ±0.2

5 0.6 96.2±1.5 5.5 ±0.5 58,492.4 ±732.2 7.8 ±0.1

10 0.5 97.1±1.3 6.1 ±0.7 55,635.8 ±1209.4 6.7 ±0.1

MSpray 5 42.2±2.5 18.5 ±0.7 2,344.8 ±58.4 1.9 ±0.0

10 53.6±2.8 18.4 ±0.7 3,785.2 ±98.0 1.9 ±0.0

30 63.0±3.9 19.2 ±0.8 5,380.0 ±188.1 1.9 ±0.0

50 63.1±3.9 19.2 ±0.8 5,442.8 ±194.1 1.9 ±0.0

100 62.1±1.8 19.3 ±0.7 5,363.0 ±134.0 1.9 ±0.0

MSprayT 5 43.6±1.9 19.9 ±0.7 1,743.0 ±64.9 1.9 ±0.0

10 44.9±1.9 20.1 ±0.7 1,814.0 ±77.9 1.9 ±0.0

MSprayRoute 5 80.8±4.1 15.4 ±1.0 7,816.4 ±269.6 4.9 ±0.0

10 85.5±3.3 13.7 ±1.1 11,853.6 ±424.4 4.7 ±0.0

30 88.6±2.7 13.2 ±1.0 17,047.4 ±763.8 4.5 ±0.1

50 88.7±2.7 13.2 ±1.0 17,921.2 ±784.0 4.5 ±0.1

100 88.7±2.7 13.2 ±1.0 18,044.0 ±826.5 4.5 ±0.1

MSprayTRoute 5 71.7±3.4 17.4 ±0.9 4,507.8 ±211.8 4.3 ±0.1

10 72.4±3.5 17.4 ±0.9 4,547.6 ±218.7 4.3 ±0.1

MProba 2 0.1 31.0±2.6 19.1 ±1.2 1,291.0 ±36.5 2.0 ±0.1

2 0.2 34.6±3.2 19.2 ±1.0 1,526.0 ±36.3 2.2 ±0.1

2 0.3 40.8±2.5 19.0 ±1.2 1,908.4 ±50.0 2.5 ±0.1

5 0.1 51.3±3.1 18.6 ±0.8 3,235.0 ±82.7 2.3 ±0.0

5 0.2 61.5±2.9 17.6 ±1.0 4,473.0 ±106.9 2.7 ±0.1

5 0.3 70.4±2.0 16.9 ±1.0 5,819.8 ±192.1 3.0 ±0.1

5 0.6 87.6±2.4 13.6 ±1.0 10,154.0 ±465.7 3.9 ±0.1

10 0.5 87.5±2.5 13.4 ±1.0 11,590.6 ±743.0 3.6 ±0.0

MFlooding 92.8±1.6 9.9 ±1.2 15,140.2 ±981.9 4.4 ±0.1

TABLE III
SIMULATION RESULTS FOR CONTROLLED FLOODING SCHEMES.

such as MSprayRoute withN = 5 and MFlooding, which are in the bend of the curve, tend to reach our
main objective.

These results have shown that allowing multiple copies to besent, while maintaining MobySpace’s
primary objective, which is to get closer at each transmission to the destination in the MobySpace, is a
real benefit for the performance of DTN routing schemes.

However, as we have seen, the kind of knowledge about node mobility that we used for routing does
not allow us, on the data we used, to achieve the same performance as Epidemic, in delay especially.
More knowledge, or knowledge that better characterizes node mobility, would certainly improve routing
performance. The trade off is then to find the most relevant information and its most efficient use
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Fig. 3. Trade-off between delivery and overhead.

for routing, without impacting the network too much in terms, for instance, of computation power
required by nodes or amount of information shared among nodes. Furthermore, the difference between
the results obtained with MobySpace and that of Epidemic might be explained by the fact that a large
number of interactions are simply not predictable because of the complexity hidden in node connectivity
patterns. MobySpace-based solutions are not able to take advantage of these unpredicted interactions,
while Epidemic is.

VI. RELATED WORK

The case of only opportunistic contacts has been analyzed byVahdat and Becker [6] using the epidemic
routing scheme that consists of flooding. In order to controlflooding in DTN, Spyropoulos et al. have
introduced the Spray and Wait [16] protocol that distributes a number of copies to relays and then waits
until the destination meets one of them. Harras et al. [17] have evaluated simple controlled message
flooding schemes with heuristics based, for instance, on hoplimits or timeouts. They also introduce a
mechanism based on bundle erasure. Once a message arrives atthe destination after basic flooding, the
remaining copies in the buffers of other nodes are erased with the proposed scheme. Wang et al. [18]
reincode the messages with erasure codes and distribute their different parts over a large number of
relays, so that the original messages can be reconstituted even if not all bundles are received. Chen et
al [19] have proposed a solution that combines the strength of the previous erasure coding scheme and the
advantages of aggressive forwarding as in epidemic routing. Widmer et al. [20] have explored network
coding techniques. All these approaches distribute multiple copies of bundles, they ensure a high reliability
of delivery, and a low latency, but they imply high buffer occupancy and high bandwidth consumption.

A large amount of work concerning routing in DTNs has also been performed with predicted contacts,
such as the algorithm of Lindgren et al. [21], which relies onnodes having a community mobility pattern.
Nodes mainly remain inside their community and sometimes visit the others. As a consequence, a node
may transfer a bundle to a node that belongs to the same community as the destination. This algorithm has
been designed as a possible solution to provide Internet connectivity to the Saami [22] population who live
in Swedish Lapland with a yearly cycle dictated by the natural behavior of reindeer. In a similar manner,
Burns et al. [23] propose a routing algorithm that uses past frequencies of contacts. Also making use of
past contacts, Davis et al. [24] improved the basic epidemicscheme with the introduction of adaptive
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dropping policies. Recently, Musolesi et al. [25] have introduced a generic method that uses Kalman
filters to combine and evaluate the multiple dimensions of the context in which nodes are in order to take
routing decisions. The context is made of measurements thatnodes perform periodically, which can be
related to connectivity, but not necessarily. This mechanism allows network architects to define their own
hierarchy among the different context attributes.

VII. C ONCLUSIONS AND FUTURE WORK

The main contribution of this paper has been the validation of a generic routing scheme that uses the
formalism of a high-dimensional Euclidean space constructed upon mobility patterns, the MobySpace. We
have shown, through the replay of real mobility traces, thatit can applied to DTNs and that it can bring
benefits in terms of enhanced bundle delivery and reduced communication costs. We have evaluated the
use of MobySpace not only for single-copy routing, but also as a means to drive and improve existing
basic controlled flooding solutions.

Future work along these lines might include studies concerning the impact of the structure of the
Euclidean space, i.e., the number and type of dimensions, and the similarity function. Different kinds of
Euclidean space can be investigated by considering schemeslike the one described in Sec. III that takes
for each dimension the frequency of contacts between a certain pair of nodes or the one that captures
cyclic frequential properties during nodes’ visits to locations.

Work also remains to be done on the stability of mobility patterns over time and their ability to be
learned by nodes. The patterns may contain long term and short term dependencies, as pointed out by
Ghosh et al. [26]. Nodes can have different mobility patterns that are each stable. For instance, they can
have one for the week-ends, one for the vacations, and one forworking weeks.

Additionally, further validations is needed on real data and in different environments. MobySpace can
be tested on traces coming from larger cell networks, like GSM networks. We might also want to evaluate
MobySpace in different social contexts where nodes have specific mobility patterns.
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