
A DTN Stack for Cognitive Radio Networks
Jawad Seddar, Hicham Khalifé, Vania Conan, J́eŕemie Leguay

Thales Communications & Security
Gennevilliers - France

name.surname@thalesgroup.com

Abstract— In this paper, we evaluate over a software de-
fined radio testbed the performance of a DTN implementa-
tion in cognitive radio networks. Our experimental platform
uses USRP devices operated by the GNU radio platform for
physical and MAC layers operations. Over the deployed soft-
ware archietcture, we have compared 2 existing DTN imple-
mentations then run a set of expirements in order to chatac-
terize the reaction of the DTN bundle protocol to dynamically
frequency changing environment. Our experiments show that
DTN can offer lower delivery delays in cognitive radio net-
works. This improvement can reach 35% over highly dy-
namic spectrum bands.

I. I NTRODUCTION

The scarcity and high competition for wireless resources
in some specific spectrum bands have triggered the emer-
gence of the cognitive radio concept [1]. Enabled by the
quick development of software defined radios, these smart
and programmable radios have become the forefront of
wireless communication research as they promise to of-
fer reliable communications as well as efficient spectrum
sharing. However, from an application point of view en-
suring continuity in communications to end users when a
channel switching occurs remains a challenge to overcome.
This channel switching (sometimes called spectrum hand-
off) can be due to the arrival of a primary radio on the used
band or even to the availability of a channel offering better
performance.

To cope with the unstability of the wireless resources
caused generally by interference and mobility, the Dis-
ruption and Delay Tolerant Networking (DTN) paradigm
has been proposed [2]. The DTN concept was originally
applied to1) static wireless networks suffering from fre-
quent link disconnections, to2)Mobile Ad hoc NETworks
(MANET) were connectivity issues are mainly related to
nodes mobility as well as to3)inter-planetary networks and
periodic message ferries where nodes mobility is known
and efficiently exploited by the DTN mechanism. How-
ever, the cognitive radio concept that exploits opportunisti-
cally the wireless spectrum forces application to cope with
disconnections caused by channel switching. Indeed, in
the context of cognitive radio networks, in addition to the
experienced interference on every channel, the spectrum
mobility i.e channel switching can create interruptions in
the ongoing communications.

In this paper, we apply the DTN concept to the cogni-
tive radio networks. Through a real implementation over

This work is supported by the EDA MIDNET project

a software radio testbed we evaluate the gains offered by
these technologies in dynamically changing spectrum con-
ditions. To do so, we integrate a full software architecture
shown in Figure 1 in order to enable DTN operations over
software radio devices. We also compare in our testbed
the performance of existing DTN implementations. Most
importantly, we show in multihop topologies that DTN
exploits opportunities created by intermittently available
bands thus increasing throughput and reducing consider-
ably delivery delays.

Applications

DTN

TCP

OLSR

MAC/PHY

Linux

GNU radio

Graphical Interface

signalling

DATA

Plugin

Fig. 1: Implemented software architecture

We argue that empowering secondary nodes in cognitive
radio networks with DTN capabilities not only enhances
the performance of these networks but also reduces the
impact on the primary networks. Indeed, exploring data
caching and custody transfer reduces the amount of ex-
changed information and hence moderates the undesirable
effects of cognitive radio nodes on primary radios the lat-
ters having higher priorities on the shared resources.

The remainder of the paper is structured as follows: we
first start by giving a brief overview on the DTN paradigm
in Section II, then describe the software defined radio plat-
form used in our tests in III. Section IV defines the imple-
mented software architecture and the interaction between
modules, experimentation results are given and discussed
in V, finally SectionVI concludes the paper and gives fu-
ture research directions.

II. DTN IN A NUTSHELL

The DTN paradigm initially proposed by K. Fall [2] tar-
geted intermittently connected networks. These connectiv-
ity interruptions can be mainly due to wireless links con-
nectivity disruptions or to predictable and unpredictable
nodes mobility. Since the first DTN paper a lot of research
has been conducted in this area [3]. We give herein a short
description of the key DTN mechanisms and motivate its
use in cognitive radio networks.

The DTN concept emcompasses the required mecha-
nisms to offer end-to-end connectivity in unreliable wire-
less networks. In order to achieve the promised goals, a
DTN architecture is defined in rfc 4838 [4] with the fol-
lowing main novelties:

• Bundles as data units- The Bundle protocol is one of
the most basic novelties introduced by the DTN archi-
tecture [5]. It can be seen as a new sublayer within the
application layer of the protocol stack to constitute the
data units in DTN networks. These data units are of
arbitrary length. This protocol offers more flexibility
in conveying data in unreliable networks by enabling
partial data transfer between nodes thus data recovery
after failures.

• Store and forward- Storing bundles even by unin-
tended nodes constitutes a key factor in coping with
link failures. Indeed, by buffering observed bundles,
the delivery success can be enhanced. This is partic-
ularly true when links appear and disappear oppor-
tunistically. Nevertheless, such mechanisms raises
the challenge of dimensionning and managing the
buffers added in each DTN node. Several studies and
proposals to decide what to store, where and when
can be found today in the literature.

• Addressing and late binding- DTN adds a specific
Endpoint Identifier to identify DTN nodes. Further-
more, these DTN identifier are binded to the lower ad-
dressing scheme (IP addressing) in each node. Conse-
quently, DTN can exploit the already running routing
protocols to detect new neighbors then decide for the
most appropriate path to the destination.

• Custody transfer- Constitutes an important reliabil-
ity feature in lossy networks. In fact, this mechanism
allows bundles to move closer to the destination by
dropping the messages at the source whenever neigh-
bors acknowledge the reception of these messages.
Such techniques allow intermediate nodes to retrans-
mit bundles if connectivity opportunities occur. Prac-
tically, choosing the best custodian nodes on the path
based on their available resources (caching, connec-
tivity etc) and the efficiency and reliability of bundles
delivery constitute a challenge to overcome.

III. C OGNITIVE RADIO PLATFORM

We discuss herein the cognitive radio platform we use in
our DTN stack implementation.

A. Software Defined Radio Devices

In order to implement our DTN architecture, we use the
Universal Software Radio Peripherals (USRP) manufac-
tured by Ettus Research [6]. In our tests, we rely on USRP2
devices (USRP N210), which are the last generation of the
USRP products commercialized by Ettus.

The USRP2 is a radio device built around a FPGA. It
possesses two 14 bit Analog-to-Digital Converters (ADCs)
running at 100MSamples/s and two 16 bit Digital-to-
Analog Converters (DACs) operating at 400MSamples/s.
This enables us to have two complex channels simultane-
ously (2 I channels and 2 Q channels). Therefore, one com-
plex input and one complex output can be simultaneously
exploited.

This software defined radio is controlled through par-
ticular programs running on a computer (described later).
The communication to the computer is done through a Gi-
gabit Ethernet connection linking the computer directly to
the FPGA. The USRP2 motherboard has two extension
slots on which several kinds of daughter boards can be
plugged. In our experimental setup, we use2 types of dual-
slot daughter boards:

• The WBX which operates between 50 and 2200 MHz
thus covering the GSM 900 MHz band.

• The SBX which operates between 400 and 4400 MHz
thus covering both the GSM 900 MHz band and the
2.4 GHz ISM band.

���������	
�

�������

���������� �������

�������

��
�������

��
��������	

��	��
������������ ������

����!���"�

�
#
$
%
&
�

'

���

�
�

�
&
�

'

���������
����!��

Fig. 2: USRP & GNU Radio software stack representation

B. GNU Radio

GNU Radio [7] is a free and open-source software de-
velopment toolkit that provides signal processing blocks
to implement software radios. It can be used with
readily-available low-cost external RF hardware to cre-
ate software-defined radios, or without hardware in a
simulation-like environment.

GNU Radio applications are primarily written us-
ing the Python programming language, while the sup-
plied performance-critical signal processing path is imple-
mented in C++ using processor floating-point extensions,

when available. Thus, the developer is able to implement
real-time, high-throughput radio systems in a simple-to-
use, rapid-application-development environment.

In order to control software defined radio devices, the
GNU radio framework requires an additional convergence
layer. For this particular reason, Ettus provides the USRP
Hardware Driver (UHD) to link to their hardware. This
UHD is provided as a standalone driver, and is made avail-
able to the GNU Radio toolkit through the implementation
of several blocks, such as an emitter (uhd.usrpsink), a re-
ceiver (uhd.usrpsource), etc.

Therefore, the overall system architecture can be
thought of as a stack with the hardware (USRP device)
sitting at the bottom of it. UHD is the direct link to the
hardware and GNU Radio is the link between user defined
flow graphs and UHD. Although one could directly con-
nect to the hardware through UHD and without the use of
GNU Radio, such configuration limits the functionning to
simple operations while the GNU Radio toolkit is very fur-
nished. The complete hierarchy is shown in Figure 2.

IV. I MPLEMENTED ARCHITECTURE OVERUSRP
PLATFORM

In order to enable DTN in a cognitive radio environment,
we have implemented the architecture highlighted in Fig-
ure 1 over software radio devices. We have used the URSP
N210 radios with the help of the GNU radio framework.
Our architecture is composed of the following modules:

• Applicationsthat we have developed in order to un-
dergo message segmentation into tunable size DTN
bundles.

• DTN module that offers buffering capability and
topology management for the message exchange. In-
deed, the DTN module transfers a whole message to
the next hop and not the final destination by estab-
lishing a TCP connection between these two peers.
We have compared in our experiments 2 DTN imple-
mentations DTN2 and IBR-DTN before selecting the
most appropriate one to our context.

• TCP protocolthat ensures the reliability and conges-
tion control between communicating nodes. Note that
the TCP protocol establishes one hop connection be-
tween the neighbors defined by the DTN module.

• OLSR protocolthat discovers and establishes routes
between deployed USRP devices in our test environ-
ment. Through a dedicated plugin we have developed,
the OLSR module feeds the DTN module with topol-
ogy information. We use the OLSR v0.6.6 release,
and install it in the linux kernel

• GNU radio frameworkthat implements the PHY and
MAC layers over the SDR devices and described ear-
lier in this paper.

• Graphical User Interface (GUI)that we have devel-
oped in Java. Our interface enables users to modify
graphically the USRP device parameters (Frequency
bands), then displays the topology as established by
OLSR and observed by the DTN module. A screen-
shot of our GUI is displayed in Figure 3.

Fig. 3: Graphical User Interface showing a 5 node star
topology

V. EXPERIMENTS AND RESULTS

We describe in this section the conducted experiments
over our softawre defined radio platform. We first compare
2 DTN implementations then highlight the advantange of
using DTN over dynamically changing spectrum bands.

A. DTN2 vs. IBR-DTN

Several implementations of the bundle protocol exist.
For this reason, the first step in our experimentation pro-
cess focuses on comparing the most known open source
DTN implementation. Our objective is to select the most
appropriate version to our validation environment. We
focus in our studies on the following two implementa-
tions:

• DTN2 [8], the reference implementation from DT-
NRG (DTN Research Group in the IRTF)

• IBR-DTN [9], a portable implementation of the bun-
dle protocol designed to run on embedded systems. It
runs on standard linux distribution as well as several
embedded systems and on Android smartphones.

We compare DTN2 (v2.9.0) to IBR-DTN (v0.10.2) using
delay as our main metric. Over our experimental platform,
we measure Round Trip Time (RTT) in different situations
(locally over the same node, 1 hop, 2 hops) using the dt-
nping command provided by each of these implementa-
tions. The purpose of our tests is to observe at the DTN
level the time required to send a message to the receiver
and get back the answer. Clearly, this delay includes the
time induced by TCP and lower layers (similar for both
implementations). We also measured the delivery time of
a 500 kB file over 1 hop. Results shown in Table I clearly
demonstrate that IBR-DTN is much more performant in
our setup than DTN2. It is also interesting to notice that
IBR reduces the observed delays by a factor of 6 for ping
messages and nearly 5 for the file exchange. This is proba-
bly due to the fact that IBR-DTN is optimized for embed-
ded implementations.

TABLE I: Comparison between DTN2 and IBR-DTN

Application DTN2 IBR-DTN
Average localhost ping (ms) 292 43.5
Average 1-hop ping (ms) 631.3 97.1
Average 2-hop ping (ms) 956.2 151.6
1-hop file transfer duration (s) 30.9 6.5

In light of these results, we have selected the IBR-DTN
bundle protocol to use in all the following experiments of
this paper.

B. Impact of disruption

After selecting the appropriate bundle protocol to oper-
ate over our software radios, we characterize the impact of
using DTN in cognitive radio networks on throughput and
delivery delays. We first consider the topology in Table 4
where the source tries to send a file to the destination by
going through the relay node. We enforce the following
disruption scenario :

• We start sending from node source to node destina-
tion.

• After 10 seconds, we start a disruption pattern on the
link between relay and destination. The disruption
occurs for a period of 1 second and repeats every 2
seconds.

This disruption pattern represents a highly unstable chan-
nel that can be used frequently by secondary users but for
very short periods of time.

������

����	

Fig. 4: Disruption topology

Figure 5 clearly shows that DTN outperforms TCP in
terms of delivery time. This is due to the fact that in a
DTN network, connections are hop by hop while TCP uses
a source to destination connection. This forces TCP to re-
transmit from the source to the destination every time a
disruption occurs. DTN on the other hand, only needs to
retransmit from the relay to the destination as it buffers
bundles in the relay node.

C. DTN in a Dynamic Environment

In order to evaluate the DTN resilience to topology
changes due to spectrum mobility, we now consider the
topology shown in Figure 6a. In this experiment, a source
node (S) tries to send the same file to 2 destination nodes
(D1 and D2). The scenario runs as follows:

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

D
ow

nl
oa

d
co

m
pl

et
io

n
in

 %

Time in seconds

TCP DTN 1350 DTN 10000

Fig. 5: Disruption results

• The source (S) starts sending the same message to
both destinations atT0.

• At T1 seconds, the station (D2) is disconnected, as
shown in Figure 6b.

• At time T2 seconds, D2 reappears as a neighbour of
D1. D1 serves now as a relay for D2. The resulting
topology is shown in Figure 6c.

In practice, this scenario reproduces the impact of the
arrival of a primary node on the selected channel between
S and D2, thus forcing them to vacate. Moreover, the
availability of a new band between D1 and D2 highlights
the strict correlation between channel availability and the
topology in cognitive radio networks.

In the results we show below, the S to D1 and S to D2
links have the same capacity of100 kbps. The D1 to D2
link has a capacity of1 Mbps. We investigate then the
impact of the values ofT1 andT2 on the delivery delay
and throughput.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

D
ow

nl
oa

d
co

m
pl

et
io

n
in

 %

Time in seconds

TCP S to D2
DTN S to D2

TCP S to D1
DTN S to D1

Fig. 7: Results forT1 = 50s andT2 = 80s

In Figure 7 we considerT1 = 50s andT2 = 80s. Those
values give enough time for S to complete the transfer to
D1 while D2 is disconnected. Indeed, as shown in 7 the S
to D1 tranfer takes around 60 seconds, while the link be-
tween D1 and D2 appears after 80 seconds. When D2 con-
nects to D1, we clearly see that the DTN transfer is much

����

�

(a) Initial topology

����

�

(b) Topology after disconnection

����

�

(c) Topology after reconnection

Fig. 6: Evolution of the topology during experiment

faster than the TCP transfer. This is due to the fact that
when using DTN, with the custody transfer functionality,
D1 stores the bundles for D2. Therefore when D2 con-
nects to D1 it can directly get the bundles from D1 instead
of getting them from S. In TCP, D1 does not receive any
packet for D2 until the new route is established (i.e going
through D1). The connection has to continue from where
it stopped from S to D2 with D1 as a relay.

If we focus on the case where D2 reconnects to D1 be-
fore the S to D1 transfer is finished, we observe the results
shown in Figure 8. In such situations, DTN allows D2 to
retrieve available bundles from D1 directly. This effect can
be seen in the figure with the sharp slope of the S to D2
curve that starts at 50 seconds (T2). Then after catching up
with the buffered bundles, D2 receives the last bundles at
nearly the same rate as D1 (plus the relaying time).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

D
ow

nl
oa

d
co

m
pl

et
io

n
in

 %

Time in seconds

TCP S to D2
DTN S to D2

TCP S to D1
DTN S to D1

Fig. 8: Results forT1 = 20s andT2 = 40s

Our experiments over a software defined radio platform
show that exploiting the DTN concept can improve the
delivery time by up to 35% (Figure 8). Therefore using
advanced mechanisms enabled by DTN such as buffering,
custody transfer can help overcome throughput limitations
in dynamic cognitive radio networks.

VI. CONCLUSION AND FUTURE WORK

We have presented here a software architecture that in-
tegrates the DTN concept over software radio devices. Our
architecture exploits the GNU radio framework over which
routing, transport and DTN protocols were implemented.
The hence build software radio testbed allowed us to eval-
uate the assets of the DTN concept in cognitive radio en-
vironments. Our experiments lead to 2 important results.
First, the IBR-DTN implementation is more efficient over

the considered tesbed, second, the DTN, by using ad-
vanced mechanisms such as improved buffering and cus-
tody transfer, improves the communications performance
in terms of delays and throughput.

In the future, we intend to test over our software archi-
tecture the performance of common applications such as
VoIP and video streaming. Indeed, testing the users Qual-
ity of Experience (QoE) when the DTN is used in cog-
nitive radio environment will allow to assess the usability
of these concept in tomorrow’s communication technolo-
gies. Moreover we plan to enrich our software defined ra-
dio platform with additional features and protocols.

REFERENCES

[1] Akyildiz, Ian F. and Lee, Won-Yeol and Vuran, Mehmet C.
and Mohanty, Shantidev,NeXt generation/dynamic spectrum ac-
cess/cognitive radio wireless networks: a survey, Comput. Netw.
Elsevier, 2006

[2] K. Fall, A delay-tolerant network architecture for challenged inter-
nets, Proc. ACM SIGCOMM, 2003

[3] M. Khabbaz and C. Assi, and W. FawazDisruption-Tolerant Net-
working: A Comprehensive Survey on Recent Developments andPer-
sisting ChallengeIEEE Communication Surveys and Tutorials, 2012

[4] IETF rfc 4838, 2007
[5] IRTF rfc 5050, 2007
[6] Ettus Research”http://www.ettus.com”
[7] The GNU Radio project, ”http://gnuradio.org”
[8] DTN Research Group”http://www.dtnrg.org”
[9] IBR-DTN ”http://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn”

